calAVA | R Documentation |
AVA of a feature is the ratio of its abundance and the most abundant metabolite in the same module i.e. the "anchor". Anchor is an annotated/known feature if available or just the most abundant metabolic feature. For every feature, mean abundance in each phenotype or condition is calculated and the maximum is considered for AVA calculation. Singletons are assigned an AVA of 1.
calAVA(se, mod.assn, metadata_variable = 1, anchor_annotation = 2)
se |
SummarizedExperiment object created using Macarron::prepInput(). |
mod.assn |
the output of Macarron::findMacMod(). |
metadata_variable |
name or index of metadata column identifying phenotypes/conditions to be used for evaluating AVA. Default: Column 1 of metadata dataframe. Note: metadata_variable must be consistent across distance matrix, ava, q-value and effect-size calculations. |
anchor_annotation |
name or index of column containing common names of the annotated metabolite. Default: Column 2 of annotation dataframe. |
mac.ava abundance versus anchor values of metabolic features
prism_abundances = system.file("extdata", "demo_abundances.csv", package="Macarron")
abundances_df = read.csv(file = prism_abundances, row.names = 1)
prism_annotations = system.file("extdata", "demo_annotations.csv", package="Macarron")
annotations_df = read.csv(file = prism_annotations, row.names = 1)
prism_metadata = system.file("extdata", "demo_metadata.csv", package="Macarron")
metadata_df = read.csv(file = prism_metadata, row.names = 1)
met_taxonomy = system.file("extdata", "demo_taxonomy.csv", package="Macarron")
taxonomy_df = read.csv(file = met_taxonomy)
mbx <- Macarron::prepInput(input_abundances = abundances_df,
input_annotations = annotations_df,
input_metadata = metadata_df)
w <- Macarron::makeDisMat(se = mbx)
modules.assn <- Macarron::findMacMod(se = mbx,
w = w,
input_taxonomy = taxonomy_df)
mets.ava <- Macarron::calAVA(se = mbx,
mod.assn = modules.assn)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.