findMacMod | R Documentation |
Cluster metabolic features based on covarying abundances into modules
findMacMod(
se,
w,
input_taxonomy,
standard_identifier = 1,
min_module_size = NULL,
evaluateMOS = TRUE
)
se |
SummarizedExperiment object created using Macarron::prepInput(). |
w |
distance matrix from function Macarron::makeDisMat(). |
input_taxonomy |
chemical taxonomy file with 3 columns specifying annotation, subclass and class of annotated features. Can be created using the decorateID.R utility of Macarron. Annotation specified with "standard_identifier" and annotation in the first column of the chemical taxonomy file must match. |
standard_identifier |
name or index of column containing HMDB or PubChem IDs. Default: Column 1 in annotation dataframe. |
min_module_size |
minimum module size to be used for module identification with dynamicTreeCut::cutreeDynamic(). Default is cube root of number of prevalent features. |
evaluateMOS |
examine measure of success for modules identified using min_module_size, min_module_size + 5, min_module_size + 10, min_module_size - 5, min_module_size - 10 |
mod.assn metabolic features clustered into "modules" based on covarying abundances and measures of success.
prism_abundances = system.file("extdata", "demo_abundances.csv", package="Macarron")
abundances_df = read.csv(file = prism_abundances, row.names = 1)
prism_annotations = system.file("extdata", "demo_annotations.csv", package="Macarron")
annotations_df = read.csv(file = prism_annotations, row.names = 1)
prism_metadata = system.file("extdata", "demo_metadata.csv", package="Macarron")
metadata_df = read.csv(file = prism_metadata, row.names = 1)
met_taxonomy = system.file("extdata", "demo_taxonomy.csv", package="Macarron")
taxonomy_df = read.csv(file = met_taxonomy)
mbx <- Macarron::prepInput(input_abundances = abundances_df,
input_annotations = annotations_df,
input_metadata = metadata_df)
w <- Macarron::makeDisMat(se = mbx)
modules.assn <- Macarron::findMacMod(se = mbx,
w = w,
input_taxonomy = taxonomy_df)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.