makeDisMat | R Documentation |
Create a biweight midcorrelation (WGCNA::bicor()) based distance matrix.
makeDisMat(
se,
metadata_variable = 1,
min_prevalence = 0.7,
execution_mode = "serial",
optimize.for = c("runtime", "memory")
)
se |
SummarizedExperiment object created using Macarron::prepInput(). |
metadata_variable |
metadata column identifying phenotypes/conditions to be used to evaluate prevalence of features. Default = Column 1 of metadata dataframe. |
min_prevalence |
prevalence threshold (percentage). Default = 0.7. |
execution_mode |
"serial" or "multi" processing with BiocParallel. Default: "serial" (recommended for laptops). "multi" may be used when running Macarron on a cluster. |
optimize.for |
runtime or memory. Features present (i.e. not NA) in "min_prevalence" of samples in each category of a "metadata_variable" will be considered e.g. if min_prevalence is 0.7 and metadata_variable has 2 categories A and B, union of (i) features present in at least 70 and (ii) features present in at least 70 Correlation between feature abundances are is calculated using WGCNA::bicor(). |
w distance matrix where distance = 1-bicor^3
prism_abundances = system.file("extdata", "demo_abundances.csv", package="Macarron")
abundances_df = read.csv(file = prism_abundances, row.names = 1)
prism_annotations = system.file("extdata", "demo_annotations.csv", package="Macarron")
annotations_df = read.csv(file = prism_annotations, row.names = 1)
prism_metadata = system.file("extdata", "demo_metadata.csv", package="Macarron")
metadata_df = read.csv(file = prism_metadata, row.names = 1)
mbx <- Macarron::prepInput(input_abundances = abundances_df,
input_annotations = annotations_df,
input_metadata = metadata_df)
w <- Macarron::makeDisMat(se = mbx)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.