Description Usage Arguments Author(s) Examples
Topological edge set enrichment analysis
1 2 3 4 | TESEA.Main(EdgeScore, pathwayEdge.db, weighted.score.type = 1,
pathway = "kegg", gs.size.threshold.min = 15,
gs.size.threshold.max = 1000, reshuffling.type = "edge.labels",
nperm = 100, p.val.threshold = -1, FDR.threshold = 0.05, topgs = 1)
|
EdgeScore |
A numeric vector. Each element is the differential score of an edge from |
pathwayEdge.db |
A character vector, the length of it is the number of pathways. |
weighted.score.type |
A value. Edge enrichment correlation-based weighting: 0=no weight, 1=standard weigth, 2 = over-weigth. The default value is 1 |
pathway |
A character string of pathway database. Should be one of "kegg","reactome", "nci","huamncyc","biocarta","spike" and "panther". The default value is "kegg" |
gs.size.threshold.min |
An integer. The minimum size (in edges) for pathways to be considered. The default value is 15. |
gs.size.threshold.max |
An integer. The maximum size (in edges) for pathways to be considered. The default value is 1000. |
reshuffling.type |
A character string. The type of permutation reshuffling: "edge.labels" or "gene.labels". The default value is "edge.labels". |
nperm |
An integer. The number of permutation reshuffling. The default value is 100. |
p.val.threshold |
A value. The significance threshold of NOM p-value for pathways whose detail results of pathways to be presented. The default value is -1, which means no threshold. |
FDR.threshold |
A value. The significance threshold of FDR q-value for pathways whose detail results of pathways to be presented. The default value is 0.05. |
topgs |
An integer. The number of top scoring gene sets used for detailed reports. The default value is 1. |
Junwei Han, Xinrui Shi and Chunquan Li wrote the original in the ESEA package, small changes by Nello Blaser.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | ## Not run:
# set random seed
set.seed(1)
# get data from ESEA
ESEA::initializeESEA()
edgesbackground <- ESEA::GetEdgesBackgrandData()
pathwayEdge.db <- ESEA::GetPathwayEdgeData()
dataset <- ESEA::GetExampleData("dataset")
class.labels <- ESEA::GetExampleData("class.labels")
controlcharacter <- ESEA::GetExampleData("controlcharactor")
# calculate edge score (triangle version)
EdgeTriScore <- triangle_creation_score(dataset,
class.labels,
controlcharacter,
edgesbackground)
# topological edge set enrichment analysis
Results_Tri <- TESEA.Main(
EdgeTriScore,
pathwayEdge.db, weighted.score.type = 1,
pathway = "kegg", gs.size.threshold.min = 15,
gs.size.threshold.max = 1000,
reshuffling.type = "edge.labels", nperm = 1000,
p.val.threshold= -1, FDR.threshold = 0.05, topgs =1)
# look at results
res_Tri <- Results_Tri[["summary"]]
res_Tri[res_Tri[, 'FDR q-val'] < 0.05, c("GS", "SIZE", "ES", "NES")]
## GS SIZE ES NES
## 103 Maturity onset diabetes of the young 17 0.90011 2.373214
## 15 Antigen processing and presentation 56 -0.54973 -1.931995
## 126 p53 signaling pathway 70 0.46139 1.638150
## 147 Rap1 signaling pathway 980 -0.27030 -1.296834
## 148 Ras signaling pathway 976 -0.26085 -1.245997
# plot first pathway
PlotTESEAPathwayGraph(Results_Tri[['pathways']][[1]])
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.