#' SQG_DE_bin_1_curr
#'
#' @param pmem_index Index of population (particle) member you are you are updating
#' @param current_params Current parameter values for partcle (numeric vector)
#' @param current_weight weights for current population
#' @param objFun function we want to minimize
#' @param n_particles number of particles
#' @param crossover_rate i.i.d. bernouli probability for updating a parameter
#' @param n_diff number of particles used to estimate the gradient
#' @param ... additional arguments for objective function
#' @noRd
#'
SQG_DE_bin_1_curr=function(pmem_index,
current_params,
current_weight,
objFun,
step_size = .8,
jitter_size = 1e-6,
n_particles,
crossover_rate = 1,
n_diff, ... ){
# sample parents
parent_indices = sample(c(1:n_particles)[-pmem_index],size=2*n_diff,replace=F)
# get statistics about sparticle
weight_use = current_weight[pmem_index]
# best_pmem_index = which.max(current_weight)
params_use = current_params[pmem_index,]
len_param_use = length(params_use)
# use binomial to sample which params to update matching crossover rate frequency
param_idices_bool = stats::rbinom(len_param_use, prob = crossover_rate, size=1)
# if no pars selected, randomly sample 1 parameter
if(all(param_idices_bool==0)){
param_idices_bool[sample(x=1:len_param_use,size=1)] = 1
}
# indices of parameters to be updated
param_indices = seq(1,len_param_use,by=1)[as.logical(param_idices_bool)]
# get rid of this for loop later
vec_diff_sum = grad_approx = numeric(length(param_indices))
for(d in 1:n_diff){
# difference in vector pairs
vec_diff_temp = (current_params[parent_indices[d],param_indices] -
current_params[parent_indices[d+n_diff],param_indices])
# sum up all vector differences for normalization step
vec_diff_sum = vec_diff_sum+vec_diff_temp
# difference in function values
weight_diff_temp = (current_weight[parent_indices[d]] -
current_weight[parent_indices[d+n_diff]])
# sum the approximate gradient vectors
grad_approx = grad_approx + vec_diff_temp*(weight_diff_temp/sqrt(sum(vec_diff_temp^2)))
}
# calculate normalization factor for algorithm self scaling
psi_num = sqrt(sum(vec_diff_sum^2))*(1/n_diff)
psi_den = sqrt(sum(grad_approx^2))
psi=psi_num/psi_den
if(all(is.finite(grad_approx)) & is.finite(psi) & (psi>0)){
# mate parents for proposal
params_use[param_indices] = current_params[pmem_index, param_indices] -
step_size*psi*(grad_approx) + # move in the direction against the gradient
stats::runif(len_param_use, -jitter_size, jitter_size) # a little noise
}
params_use = matrix(params_use,1,len_param_use)
weight_proposal = NA
# get weight
if(all(is.finite(params_use)))weight_proposal = objFun(params_use,...)
if(is.na(weight_proposal))weight_proposal = Inf
#negative greedy acceptance rule
if(weight_proposal < weight_use) {
current_params[pmem_index,] = params_use
current_weight[pmem_index] = weight_proposal
}
return(c(current_weight[pmem_index],current_params[pmem_index,]))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.