Description Usage Arguments Value Examples
getSigRegion
returns the significant DMRs giving the segmented
MethCP
object.
1 2 3 | getSigRegion(
object, sig.level = 0.01, mean.coverage = 1,
mean.diff = 0.1, nC.valid = 10)
|
object |
a |
sig.level |
significance level to call a region DMR. |
mean.coverage |
The minimum average coverage required for the reported DMRs. |
mean.diff |
The minimum differences between groups required for the reported DMRs. |
nC.valid |
number of valid cytosines required for the reported DMRs. |
a data.frame
containing the DMRs.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | library(bsseq)
# Simulate a small dataset with 2000 cyotsine and 6 samples,
# 3 in the treatment group and 3 in the control group. The
# methylation ratio are generated using Binomial distribution
# with probability 0.3.
nC <- 2000
sim_cov <- rnbinom(6*nC, 5, 0.5) + 5
sim_M <- vapply(
sim_cov, function(x) rbinom(1, x, 0.3), FUN.VALUE = numeric(1))
sim_cov <- matrix(sim_cov, ncol = 6)
sim_M <- matrix(sim_M, ncol = 6)
# methylation ratios in the DMRs in the treatment group are
# generated using Binomial(0.7)
DMRs <- c(600:622, 1089:1103, 1698:1750)
sim_M[DMRs, 1:3] <- vapply(
sim_cov[DMRs, 1:3], function(x) rbinom(1, x, 0.7),
FUN.VALUE = numeric(1))
# sample names
sample_names <- c(paste0("treatment", 1:3), paste0("control", 1:3))
colnames(sim_cov) <- sample_names
colnames(sim_M) <- sample_names
# create a bs.object
bs_object <- BSseq(gr = GRanges(
seqnames = "Chr01",
IRanges(start = (1:nC)*10, width = 1)),
Cov = sim_cov, M = sim_M, sampleNames = sample_names)
DMRs_pos <- DMRs*10
methcp_obj1 <- calcLociStat(
bs_object,
group1 = paste0("treatment", 1:3),
group2 = paste0("control", 1:3),
test = "methylKit")
methcp_obj1 <- segmentMethCP(
methcp_obj1, bs_object,
region.test = "fisher")
methcp_res1 <- getSigRegion(methcp_obj1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.