# Kernels --------------------------------------------------
CONVENTIONAL_KERNELS <- c(
"Linear",
"Polynomial",
"Exponential",
"Sigmoid",
"Gaussian",
"Arc_cosine"
)
SPARSE_KERNELS <- c(
"Sparse_Linear",
"Sparse_Polynomial",
"Sparse_Exponential",
"Sparse_Sigmoid",
"Sparse_Gaussian",
"Sparse_Arc_cosine"
)
ARC_COSINE_KERNELS <- c("Arc_cosine", "Sparse_Arc_cosine")
KERNELS_WITH_DEGREE <- c("Polynomial", "Sparse_Polynomial")
KERNELS_WITH_GAMMA <- c(
"Polynomial", "Sparse_Polynomial",
"Sigmoid", "Sparse_Sigmoid",
"Gaussian", "Sparse_Gaussian", "radial",
"Exponential", "Sparse_Exponential"
)
KERNELS_WITH_COEF0 <- c(
"Polynomial", "Sparse_Polynomial",
"Sigmoid", "Sparse_Sigmoid"
)
# For models --------------------------------------------------
SVM_KERNELS <- c("linear", "polynomial", "radial", "sigmoid")
SVM_CLASS_WEIGHTS <- c("inverse")
RANDOM_FOREST_SPLIT_RULES <- c("mse", "gini", "auc", "entropy")
RANDOM_FOREST_NA_ACTIONS <- c("omit", "impute")
VALID_ACTIVATION_FUNCTIONS <- c(
"linear",
"relu",
"elu",
"selu",
"hard_sigmoid",
"linear",
"sigmoid",
"softmax",
"softplus",
"softsign",
"tanh",
"exponential"
)
VALID_OPTIMIZERS <- c(
"adadelta",
"adagrad",
"adamax",
"adam",
"nadam",
"rmsprop",
"sgd"
)
VALID_DEEP_LEARNING_LOSS_FUNCTIONS <- c(
"binary_crossentropy",
"categorical_crossentropy",
"sparse_categorical_crossentropy",
"poisson",
"kl_divergence",
"mean_squared_error",
"mean_absolute_error",
"mean_absolute_percentage_error",
"mean_squared_logarithmic_error",
"cosine_similarity",
"huber",
"log_cosh",
"hinge",
"squared_hinge",
"categorical_hinge"
)
DEFAULT_LAYER_NEURONS <- 50
DEFAULT_LAYER_ACTIVATION <- "relu"
DEFAULT_LAYER_DROPOUT <- 0
DEFAULT_RIDGE_PENALTY <- 0
DEFAULT_LASSO_PENALTY <- 0
NEURONS_PROPORTION_MAX_VALUE <- 10
BAYESIAN_MODELS <- c(
"FIXED",
"BGBLUP",
"BRR",
"Bayes_Lasso",
"Bayes_A",
"Bayes_B",
"Bayes_C"
)
MULTIVARIATE_BAYESIAN_MODELS <- c("FIXED", "BGBLUP", "BRR")
BAYESIAN_COVARIANCE_STRUCTURE_TYPES <- c(
"Unstructured",
"Diagonal",
"Factor_analytic",
"Recursive"
)
PARTIAL_LEAST_SQUARES_METHODS <- c(
"kernel",
"wide_kernel",
"simpls",
"orthogonal"
)
PREDICT_FORMAT <- c("list", "data.frame")
# Tuning --------------------------------------------------
TUNE_CV_TYPES <- c("K_fold", "Random", "K_fold_strata")
GLM_CV_TYPES <- c("K_fold")
TUNE_TYPES <- c("Grid_search", "Bayesian_optimization")
TUNE_NUMERIC_LOSS_FUNCTIONS <- c(
"mse",
"maape",
"mae",
"nrmse",
"rmse",
"pearson",
"ndcg"
)
TUNE_BINARY_LOSS_FUNCTIONS <- c("f1_score", "roc_auc", "pr_auc")
TUNE_CATEGORICAL_LOSS_FUNCTIONS <- c("accuracy", "kappa_coeff")
NEED_INVERT_LOSS <- c(
"f1_score",
"roc_auc",
"pr_auc",
"accuracy",
"kappa_coeff",
"pearson",
"ndcg"
)
# Others --------------------------------------------------
RESPONSE_TYPES <- list(
CONTINUOUS = "continuous",
DISCRETE = "discrete",
BINARY = "binary",
CATEGORICAL = "categorical"
)
# Genomic selection --------------------------------------------------
GS_PREDICTORS <- c("Line", "Env", "EnvxLine")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.