# Use all default hyperparameters (no tuning) -------------------------------
x <- to_matrix(iris[, -5])
y <- iris$Species
model <- deep_learning(x, y)
# Predict using the fitted model
predictions <- predict(model, x)
# Obtain the predicted values
predictions$predicted
# Obtain the predicted probabilities
predictions$probabilities
# Tune with grid search -----------------------------------------------------
x <- to_matrix(iris[, -1])
y <- iris$Sepal.Length
model <- deep_learning(
x,
y,
epochs_number = c(10, 20),
learning_rate = c(0.001, 0.01),
layers = list(
# First hidden layer
list(neurons_number = c(10, 20)),
# Second hidden layer
list(neurons_number = c(10))
),
tune_type = "grid_search",
tune_cv_type = "k_fold",
tune_folds_number = 5
)
# Obtain the whole grid with the loss values
model$hyperparams_grid
# Obtain the hyperparameters combination with the best loss value
model$best_hyperparams
# Predict using the fitted model
predictions <- predict(model, x)
# Obtain the predicted values
predictions$predicted
# Tune with Bayesian optimization -------------------------------------------
x <- to_matrix(iris[, -1])
y <- iris$Sepal.Length
model <- deep_learning(
x,
y,
epochs_number = list(min = 10, max = 50),
learning_rate = list(min = 0.001, max = 0.5),
layers = list(
list(
neurons_number = list(min = 10, max = 20),
dropout = list(min = 0, max = 1),
activation_layer = "sigmoid"
)
),
tune_type = "bayesian_optimization",
tune_bayes_samples_number = 5,
tune_bayes_iterations_number = 5,
tune_cv_type = "random",
tune_folds_number = 2
)
# Obtain the whole grid with the loss values
model$hyperparams_grid
# Obtain the hyperparameters combination with the best loss value
model$best_hyperparams
# Predict using the fitted model
predictions <- predict(model, x)
# Obtain the predicted values
predictions$predicted
# Obtain the execution time taken to tune and fit the model
model$execution_time
# Multivariate analysis -----------------------------------------------------
x <- to_matrix(iris[, -c(1, 5)])
y <- iris[, c(1, 5)]
model <- deep_learning(
x,
y,
epochs_number = 10,
layers = list(
list(
neurons_number = 50,
dropout = 0.5,
activation = "relu",
ridge_penalty = 0.5,
lasso_penalty = 0.5
)
),
optimizer = "adadelta"
)
# Predict using the fitted model
predictions <- predict(model, x)
# Obtain the predicted values of the first response
predictions$Sepal.Length$predicted
# Obtain the predicted values and probabilities of the second response
predictions$Species$predicted
predictions$Species$probabilities
# Obtain the predictions in a data.frame not in a list
predictions <- predict(model, x, format = "data.frame")
head(predictions)
# With Platt scaling --------------------------------------------------------
x <- to_matrix(iris[, -1])
y <- iris$Sepal.Length
model <- deep_learning(
x,
y,
with_platt_scaling = TRUE,
platt_proportion = 0.25
)
# Predict using the fitted model
predictions <- predict(model, x)
# Obtain the predicted values
predictions$predicted
# Genomic selection ------------------------------------------------------------
data(Maize)
# Data preparation of G
Line <- model.matrix(~ 0 + Line, data = Maize$Pheno)
# Compute cholesky
Geno <- cholesky(Maize$Geno)
# G matrix
X <- Line %*% Geno
y <- Maize$Pheno$Y
# Set seed for reproducible results
set.seed(2022)
folds <- cv_kfold(records_number = nrow(X), k = 4)
Predictions <- data.frame()
Hyperparams <- data.frame()
# Model training and predictions
for (i in seq_along(folds)) {
cat("*** Fold:", i, "***\n")
fold <- folds[[i]]
# Identify the training and testing sets
X_training <- X[fold$training, ]
X_testing <- X[fold$testing, ]
y_training <- y[fold$training]
y_testing <- y[fold$testing]
# Model training
model <- deep_learning(
X_training,
y_training,
epochs_number = list(min = 50, max = 100),
learning_rate = list(min = 0.0001, max = 0.1),
layers = list(
list(
neurons_number = list(min = 2, max = 5),
activation = c("linear")
),
list(
neurons_number = list(min = 2, max = 10),
activation = c("linear")
)
),
tune_type = "Bayesian_Optimization",
tune_bayes_iterations_number = 5,
tune_bayes_samples_number = 5,
tune_cv_type = "k_fold",
tune_folds_number = 3
)
# Prediction of testing set
predictions <- predict(model, X_testing)
# Predictions for the i-th fold
FoldPredictions <- data.frame(
Fold = i,
Line = Maize$Pheno$Line[fold$testing],
Env = Maize$Pheno$Env[fold$testing],
Observed = y_testing,
Predicted = predictions$predicted
)
Predictions <- rbind(Predictions, FoldPredictions)
# Hyperparams
HyperparamsFold <- model$hyperparams_grid %>%
mutate(Fold = i)
Hyperparams <- rbind(Hyperparams, HyperparamsFold)
# Best hyperparams of the model
cat("*** Optimal hyperparameters: ***\n")
print(model$best_hyperparams)
}
head(Predictions)
# Compute the summary of all predictions
summaries <- gs_summaries(Predictions)
# Summaries by Line
head(summaries$line)
# Summaries by Environment
summaries$env
# Summaries by Fold
summaries$fold
# First rows of Hyperparams
head(Hyperparams)
# Last rows of Hyperparams
tail(Hyperparams)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.