data(IrisMatrix)
test_that("Univariate numeric", {
x <- list(list(x = x_num, model = "BRR"))
model <- bayesian_model(
x = x,
y = y_num,
testing_indices = 10,
seed = 1,
verbose = FALSE
)
y <- y_num
y[10] <- NA
x <- list(x_1 = list(x = to_matrix(x_num), model = "BRR"))
expect_bayesian_model(
model = model,
x = x,
y = y,
responses = list(
y = list(type = RESPONSE_TYPES$CONTINUOUS, levels = NULL)
),
bglr_response_type = "gaussian",
testing_indices = 10
)
})
test_that("Univariate binary", {
x <- list(list(x = x_bin, model = "BRR"), list(x = x_bin, model = "BRR"))
y <- y_bin
testing_indices <- c(5, 10, 15, 20)
y[testing_indices] <- NA
model <- suppressWarnings(bayesian_model(
x,
y,
seed = 1,
verbose = FALSE
))
x <- list(
x_1 = list(x = to_matrix(x_bin), model = "BRR"),
x_2 = list(x = to_matrix(x_bin), model = "BRR")
)
expect_bayesian_model(
model = model,
x = x,
y = y,
responses = list(
y = list(type = RESPONSE_TYPES$BINARY, levels = levels(y_bin))
),
bglr_response_type = "ordinal",
testing_indices = testing_indices
)
})
test_that("Univariate categorical", {
x <- list(list(x = x_cat, model = "bayes_a"))
testing_indices <- c(1, 2, 3, 4, 148, 149, 150)
model <- suppressWarnings(bayesian_model(
x,
y_cat,
iterations_number = 100,
burn_in = 50,
testing_indices = testing_indices,
seed = 1,
verbose = FALSE
))
x <- list(x_1 = list(x = to_matrix(x_cat), model = "bayes_a"))
y <- y_cat
y[testing_indices] <- NA
expect_bayesian_model(
model = model,
x = x,
y = y,
responses = list(
y = list(type = RESPONSE_TYPES$CATEGORICAL, levels = levels(y_cat))
),
bglr_response_type = "ordinal",
testing_indices = testing_indices
)
})
test_that("Univariate numeric (NA)", {
x <- x_num
y <- y_num
x[2, 3] <- NA
x[56, 2] <- NA
x[144, 1] <- NA
y[100] <- NA
y[20] <- NA
testing_indices <- c(20, 2, 15, 18)
x <- list(hola = list(x = x, model = "bayes_LASsO"))
model <- suppressWarnings(bayesian_model(
x,
y,
iterations_number = 100,
burn_in = 5,
thinning = 1,
testing_indices = testing_indices,
seed = 1,
verbose = FALSE
))
x <- list(hola = list(x = to_matrix(x$hola$x), model = "bayes_LASsO"))
y[c(testing_indices, 100)] <- NA
expect_bayesian_model(
model = model,
x = x,
y = y,
responses = list(
y = list(type = RESPONSE_TYPES$CONTINUOUS, levels = NULL)
),
removed_rows = c(2, 56, 144),
bglr_response_type = "gaussian",
# In each one is substracted the number of lower removed rows
testing_indices = c(14, 17, 98, 19)
)
})
test_that("Multivariate numeric", {
x <- list(
list(x = x_multi, model = "BRR"),
bar = list(x = x_multi, model = "BRR")
)
model <- bayesian_model(
x,
y_multi,
testing_indices = c(5, 13),
seed = 1,
verbose = FALSE
)
x <- list(
x_1 = list(x = to_matrix(x_multi), model = "BRR"),
bar = list(x = to_matrix(x_multi), model = "BRR")
)
y <- to_matrix(y_multi)
rownames(y) <- NULL
y[c(5, 13), ] <- NA
expect_bayesian_model(
model = model,
x = x,
y = y,
responses = list(
y1 = list(type = RESPONSE_TYPES$CONTINUOUS, levels = NULL),
y2 = list(type = RESPONSE_TYPES$CONTINUOUS, levels = NULL)
),
is_multivariate = TRUE,
bglr_response_type = NULL,
testing_indices = c(5, 13)
)
})
test_that("Multivariate combined", {
x <- list(list(x = x_multi_cat, model = "BRR"))
testing_indices <- 100:110
model <- suppressWarnings(bayesian_model(
x,
y_multi_cat,
testing_indices = testing_indices,
seed = 1,
verbose = FALSE
))
x <- list(x_1 = list(x = to_matrix(x_multi_cat), model = "BRR"))
y <- data.matrix(y_multi_cat)
rownames(y) <- NULL
y[testing_indices, ] <- NA
expect_bayesian_model(
model = model,
x = x,
y = y,
responses = list(
y1 = list(type = RESPONSE_TYPES$CONTINUOUS, levels = NULL),
y2 = list(type = RESPONSE_TYPES$CONTINUOUS, levels = NULL)
),
is_multivariate = TRUE,
bglr_response_type = NULL,
testing_indices = testing_indices
)
})
test_that("Multivariate numeric (NA)", {
x <- x_multi
y <- data.matrix(y_multi)
rownames(y) <- NULL
x[5, 1] <- NA
x[10, 2] <- NA
x[50, 1] <- NA
x[53, 3] <- NA
y[5, 1] <- NA
y[22, 2] <- NA
y[40, 2] <- NA
y[44, 1] <- NA
x <- list(foo = list(x = x, model = "BRR"))
model <- suppressWarnings(bayesian_model(
x,
y,
seed = 1,
verbose = FALSE
))
x <- list(foo = list(x = to_matrix(x$foo$x), model = "BRR"))
y[c(5, 22, 40, 44), ] <- NA
expect_bayesian_model(
model = model,
x = x,
y = y,
responses = list(
y1 = list(type = RESPONSE_TYPES$CONTINUOUS, levels = NULL),
y2 = list(type = RESPONSE_TYPES$CONTINUOUS, levels = NULL)
),
is_multivariate = TRUE,
bglr_response_type = NULL,
removed_rows = c(5, 10, 50, 53),
testing_indices = c(20, 38, 42)
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.