fit | R Documentation |
mvnmm
.Function to fit the input data.
fit(
cov.df,
vaf.df = NULL,
infer_phylogenies = TRUE,
infer_growth = TRUE,
k_interval = c(5, 15),
n_runs = 1,
steps = 500,
min_steps = 20,
lr = 0.005,
p = 1,
min_frac = 0,
max_IS = NULL,
check_conv = TRUE,
covariance = "full",
hyperparams = list(),
default_lm = TRUE,
timepoints_to_int = list(),
show_progr = FALSE,
store_grads = TRUE,
store_losses = TRUE,
store_params = FALSE,
seed_optim = TRUE,
seed = 6,
seed_init = reticulate::py_none(),
sample_id = ""
)
cov.df |
Input coverage dataset. It must have at least the columns |
vaf.df |
Input VAF dataset. If not |
infer_phylogenies |
A Boolean. If set to |
k_interval |
Interval of K values to test. |
n_runs |
Number of runs to perform for each K. |
steps |
Maximum number of steps for the inference. |
lr |
Learning rate used in the inference. |
p |
Numeric value used to check the convergence of the parameters. |
min_frac |
add |
max_IS |
add |
check_conv |
A Boolean. If set to |
covariance |
Covariance type for the Multivariate Gaussian. |
hyperparams |
add |
default_lm |
add |
timepoints_to_int |
add |
show_progr |
A Boolean. If |
store_grads |
A Booolean. If |
store_losses |
A Boolean. If |
store_params |
A Boolean. If |
seed_optim |
add |
seed |
Value of the seed. |
sample_id |
add |
A mvnmm
object, containing the input dataset, annotated with IS_values, N, K, T
specific of the dataset, the input IS and column names, a list params that will contain the
inferred parameters, the python object
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.