## code to prepare `RemoteSensing_Annual_Broadscale` dataset
library(dplyr)
library(tidyr)
library(readr)
library(usethis)
# load data
# chl data
chl_env <- new.env()
con <- url("ftp://ftp.dfo-mpo.gc.ca/AZMP_Maritimes/azmpdata/data/biochemical/Surface_Chl_8day_MODIS.RData")
load(con, envir=chl_env)
close(con)
# bloom data
bloom_env <- new.env()
con <- url("ftp://ftp.dfo-mpo.gc.ca/AZMP_Maritimes/azmpdata/data/biochemical/Bloom_parameters_8day_MODIS.RData")
load(con, envir=bloom_env)
close(con)
# assemble data
RemoteSensing_Annual_Broadscale <- dplyr::bind_rows(chl_env$df_log_means_annual_l %>%
dplyr::mutate(variable="chl") %>%
dplyr::select(region, year, variable, value),
bloom_env$df_data_filtered_l %>%
dplyr::select(region, year, variable, value))
# clean up
rm(list=c("chl_env", "bloom_env"))
# rename regions
RemoteSensing_Annual_Broadscale$region <- gsub(RemoteSensing_Annual_Broadscale$region, pattern = '^CS$', replacement = 'CS_remote_sensing')
RemoteSensing_Annual_Broadscale$region <- gsub(RemoteSensing_Annual_Broadscale$region, pattern = '^ESS$', replacement = 'ESS_remote_sensing')
RemoteSensing_Annual_Broadscale$region <- gsub(RemoteSensing_Annual_Broadscale$region, pattern = '^CSS$', replacement = 'CSS_remote_sensing')
RemoteSensing_Annual_Broadscale$region <- gsub(RemoteSensing_Annual_Broadscale$region, pattern = '^WSS$', replacement = 'WSS_remote_sensing')
RemoteSensing_Annual_Broadscale$region <- gsub(RemoteSensing_Annual_Broadscale$region, pattern = '^GB$', replacement = 'GB_remote_sensing')
RemoteSensing_Annual_Broadscale$region <- gsub(RemoteSensing_Annual_Broadscale$region, pattern = '^LS$', replacement = 'LS_remote_sensing')
# target variables to include
target_var <- c("chl" = "surface_chlorophyll_log10",
"t[start]" = "bloom_start",
"t[duration]" = "bloom_duration",
"Amplitude[real]" = "bloom_amplitude",
"Magnitude[real]" = "bloom_magnitude")
# print order
print_order <- c("CS_remote_sensing" = 1,
"ESS_remote_sensing" = 2,
"CSS_remote_sensing" = 3,
"WSS_remote_sensing" = 4,
"GB_remote_sensing" = 5,
"LS_remote_sensing" = 6)
# reformat data
RemoteSensing_Annual_Broadscale <- RemoteSensing_Annual_Broadscale %>%
dplyr::mutate(order = unname(print_order[region])) %>%
dplyr::filter(variable %in% names(target_var)) %>%
dplyr::mutate(variable = unname(target_var[variable])) %>%
tidyr::spread(variable, value) %>%
dplyr::arrange(order, year) %>%
dplyr::select(region, year, unname(target_var))
# fix metadata
RemoteSensing_Annual_Broadscale <- RemoteSensing_Annual_Broadscale %>%
dplyr::rename(area = region)
# save data to csv
readr::write_csv(RemoteSensing_Annual_Broadscale, "inst/extdata/csv/RemoteSensing_Annual_Broadscale.csv")
# save data to rda
usethis::use_data(RemoteSensing_Annual_Broadscale, overwrite = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.