## code to prepare `RemoteSensing_Weekly_Broadscale` dataset
library(dplyr)
library(tidyr)
library(readr)
library(usethis)
# load data
con <- url("ftp://ftp.dfo-mpo.gc.ca/AZMP_Maritimes/azmpdata/data/biochemical/Surface_Chl_8day_MODIS.RData")
load(con)
close(con)
# clean up
rm(list=setdiff(ls(), "df_data_filtered"))
# target variables to include
target_var <- c("chl" = "surface_chlorophyll")
# print order
print_order <- c("CS" = 1,
"ESS" = 2,
"CSS" = 3,
"WSS" = 4,
"GB" = 5,
"LS" = 6)
# reformat data
RemoteSensing_Weekly_Broadscale <- df_data_filtered %>%
dplyr::select(region, year, doy, value) %>%
dplyr::filter(year<=2020) %>%
dplyr::mutate(variable="chl") %>%
dplyr::mutate(order = unname(print_order[region])) %>%
dplyr::filter(variable %in% names(target_var)) %>%
dplyr::mutate(variable = unname(target_var[variable])) %>%
tidyr::spread(variable, value) %>%
dplyr::arrange(order, year) %>%
dplyr::select(region, year, doy, unname(target_var))
# rename regions
RemoteSensing_Weekly_Broadscale$region <- gsub(RemoteSensing_Weekly_Broadscale$region, pattern = '^CS$', replacement = 'CS_remote_sensing')
RemoteSensing_Weekly_Broadscale$region <- gsub(RemoteSensing_Weekly_Broadscale$region, pattern = '^ESS$', replacement = 'ESS_remote_sensing')
RemoteSensing_Weekly_Broadscale$region <- gsub(RemoteSensing_Weekly_Broadscale$region, pattern = '^CSS$', replacement = 'CSS_remote_sensing')
RemoteSensing_Weekly_Broadscale$region <- gsub(RemoteSensing_Weekly_Broadscale$region, pattern = '^WSS$', replacement = 'WSS_remote_sensing')
RemoteSensing_Weekly_Broadscale$region <- gsub(RemoteSensing_Weekly_Broadscale$region, pattern = '^GB$', replacement = 'GB_remote_sensing')
RemoteSensing_Weekly_Broadscale$region <- gsub(RemoteSensing_Weekly_Broadscale$region, pattern = '^LS$', replacement = 'LS_remote_sensing')
# fix metadata
RemoteSensing_Weekly_Broadscale <- RemoteSensing_Weekly_Broadscale %>%
dplyr::rename(area = region)
# save data to csv
readr::write_csv(RemoteSensing_Weekly_Broadscale, "inst/extdata/csv/RemoteSensing_Weekly_Broadscale.csv")
# save data to rda
usethis::use_data(RemoteSensing_Weekly_Broadscale, overwrite = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.