#' @title FUNCTION_TITLE
#' @description FUNCTION_DESCRIPTION
#' @param drift_corr PARAM_DESCRIPTION
#' @return OUTPUT_DESCRIPTION
#' @details DETAILS
#' @examples
#' \dontrun{
#' if(interactive()){
#' #EXAMPLE1
#' }
#' }
#' @rdname process_CSIA_full_run
#' @export
process_CSIA_full_run <- function(drift_corr){
##############################################################################
##############################################################################
# source(paste0(file_sorc, "/read_tag_correct.R"))
outs <- read_tag_correct(C_N = C_N, file_sorc = file_sorc, file_data = file_data, AAStd_name = AAStd_name, drift_corr =drift_corr)
Std_df = outs$Std_df # Summary table of the AA std runs and the data used in correction factors
fn_df = outs$fn_df # All corrected sample data. Mean of Isodat values, std of isodat values, corrected final value
df_peaks = outs$df_peaks # Not corrected data for the sample runs and lab stds. AAs tagged, file names and isodat info stored here
df_AAstd = outs$df_AAstd # All of the data from the AA std runs including file names and amplitudes
df_all = outs$df_all # All of the data from isodat, all samples all aa stds and all lab standards -- not corrected, AA not tagged yet
rm(outs)
## Sometimes for N when correcting peak st and end it gets confused and does not read vendor data table correctly -- need to reset the dxf file
##########################################################
## Add flags
# source(paste0(file_sorc, "/add_flags_and_order.R"))
outs <- add_flags_and_order(fn_df = fn_df, Std_df = Std_df, df_peaks = df_peaks, df_AAstd = df_AAstd)
fn_df <- outs$fn_df
Std_df <- outs$Std_df
all_fn_df <- outs$all_fn_df
all_fn_std_df <- outs$all_fn_std_df
##########################################################
## Write out the lab standards to a separate folder for plotting later
if(C_N =="N"){
file_save_stds <- file_save_stds_N
file_save_AAstds <- file_save_AAstds_N
if(!is.na(cyano)|!is.na(fish_muscle)){
write.csv(fn_df[fn_df$smp %in% c(cyano, fish_muscle),], paste0(file_save_stds, "/",fl_nm,"_",cyano,"_",fish_muscle, ".csv"))
}
write.csv(all_fn_std_df, paste0(file_save_AAstds, "/",fl_nm,"_AA_Std.csv"))
}else if(C_N == "C"){
file_save_stds <- file_save_stds_C
file_save_AAstds <- file_save_AAstds_C
if(!is.na(cyano)|!is.na(fish_muscle)){
write.csv(fn_df[fn_df$smp %in% c(cyano, fish_muscle),], paste0(file_save_stds, "/",fl_nm,"_",cyano,"_",fish_muscle, ".csv"))
}
write.csv(all_fn_std_df, paste0(file_save_AAstds, "/",fl_nm,"_AA_Std.csv"))
}
##########################################################
## Write out the final data from today
write.csv(fn_df, paste0(file_save, "/fn_df_",fl_nm,"_",Sys.Date(), ".csv"))
write.csv(all_fn_df, paste0(file_save, "/all_fn_df_",fl_nm,"_",Sys.Date(), ".csv"))
write.csv(all_fn_std_df, paste0(file_save, "/all_fn_std_df_",fl_nm,"_",Sys.Date(), ".csv"))
##########################################################
if(order_AAs == "Run"){
order_AA <- data.frame(AA = c("Ala", "Gly", "Thr", "Ser", "Val", "Leu", "Ile", "NLeu", "Pro", "Asp", "Met", "Glu", "Phe", "Lys", "Arg"),
order = c(1:15) )
Std_df$AAs <- factor(Std_df$AAs, levels = order_AA$AA)
fn_df$AAs <- factor(fn_df$AAs, levels = order_AA$AA)
all_fn_std_df$AAs <- factor(all_fn_std_df$AAs, levels = order_AA$AA)
}else if (order_AAs == "Type"){
if(C_N == "N"){
order_AA <- data.frame(AA = c("Ala", "Asp", "Glu", "Ile", "Leu", "Pro", "Val", "Gly", "Lys", "Phe", "Ser", "Thr", "Tyr", "Arg", "Met", "NLeu"),
type = c("T", "T", "T", "T", "T", "T", "T", "S", "S", "S", "S", "S", "S", "S", "S" , "C"),
order = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 , 15, 16) )
}else if(C_N == "C"){
order_AA <- data.frame(AA = c("Thr", "Val", "Leu", "Ile", "Phe", "Lys", "Ala", "Gly", "Ser", "Pro", "Asp", "Met", "Glu", "Arg", "NLeu" ),
type = c("E", "E", "E", "E", "E", "E", "N", "N", "N", "N", "N", "N", "N", "N" , "C"),
order = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 , 15) )
}
Std_df$AAs <- factor(Std_df$AAs, levels = order_AA$AA)
fn_df$AAs <- factor(fn_df$AAs, levels = order_AA$AA)
all_fn_std_df$AAs <- factor(all_fn_std_df$AAs, levels = order_AA$AA)
}
# order_AA <- data.frame(AA = c("Ala", "Gly", "Thr", "Ser", "Val", "Leu", "Ile", "NLeu", "Pro", "Asp", "Met", "Glu", "Phe", "Lys", "Arg"),
# order = c(1:15) )
all_fn_std_df$run <- as.factor(all_fn_std_df$run)
## What prelim figures to add to this to quick assess
library(ggplot2)
library(gridExtra)
if(C_N == "C"){
std_plt <- ggplot() +
geom_point(data = all_fn_std_df, aes(x = AAs , y = d.13C.12C.per.mil.vs..VPDB, fill = run, alpha = flag_Stdev), size = 5,pch=21, color = "black", position =position_dodge(width=0.5)) +
geom_point(data = Std_df, aes(x = AAs , y = Mean), color = "black", size = 4) +
geom_errorbar(data = Std_df, aes(x = AAs,
ymin=Mean-Stdev,
ymax=Mean+Stdev), width=.2) +
guides(alpha = "none") +
ggtitle(fl_nm) +
theme_bw() +
theme(legend.position="bottom")
smp_plt <- ggplot() +
geom_point(data = fn_df, aes(x = AAs,
y = Corrected_delta_13_c,
fill = smp,
alpha = flag_Stdev), size = 5, pch=21, color = "black",
position =position_dodge(width=0.2), stat = "identity") +
geom_errorbar(data = fn_df,
aes(x = AAs,
ymin=Corrected_delta_13_c-Stdev,
ymax=Corrected_delta_13_c+Stdev,
color = smp),
position = position_dodge(width=0.2)) +
guides(alpha = "none") +
theme_bw() +
theme(legend.position="bottom")
}else if(C_N =="N"){
std_plt <- ggplot() +
geom_point(data = all_fn_std_df, aes(x = AAs , y = d.15N.14N, fill = run, alpha = flag_Stdev), size = 5,pch=21, color = "black", position =position_dodge(width=0.5)) +
geom_point(data = Std_df, aes(x = AAs , y = Mean), color = "black", size = 4) +
geom_errorbar(data = Std_df, aes(x = AAs,
ymin=Mean-Stdev,
ymax=Mean+Stdev), width=.2) +
guides(alpha = "none") +
ggtitle(fl_nm) +
theme_bw() +
theme(legend.position="bottom")
smp_plt <- ggplot() +
geom_point(data = fn_df, aes(x = AAs,
y = Corrected_delta_15_N,
fill = smp,
alpha = flag_Stdev), size = 5, pch=21, color = "black",
position =position_dodge(width=0.2), stat = "identity") +
geom_errorbar(data = fn_df,
aes(x = AAs,
ymin=Corrected_delta_15_N-Stdev,
ymax=Corrected_delta_15_N+Stdev,
color = smp),
position = position_dodge(width=0.2)) +
guides(alpha = "none") +
theme_bw() +
theme(legend.position="bottom") #+
#ylim(-10, 40)
}
grid.arrange(std_plt, smp_plt)
if(C_N == "C"){
# source(paste(file_sorc,"Lab_Std_plots_C.R", sep = "/"))
lab_aa_plt <- Plt_Lab_AAStds_C(file_save_AAstds_C = file_save_AAstds_C)+
geom_point(data = all_fn_std_df, aes(x = AAs,
y = Mean), size = 5, color = "black") +
ggtitle(fl_nm)
lab_std_plt <- Plt_Lab_Stds_C(file_save_stds_C = file_save_stds_C) +
geom_point(data = fn_df[fn_df$smp == cyano,], aes(x = AAs,
y = Corrected_delta_13_c), size = 5, color = "black") +
geom_point(data = fn_df[fn_df$smp == fish_muscle,], aes(x = AAs,
y = Corrected_delta_13_c), size = 5, color = "darkgray")
}else if(C_N == "N"){
# source(paste(file_sorc,"Lab_Std_plots_N.R", sep = "/"))
lab_aa_plt <- Plt_Lab_AAStds_N(file_save_AAstds_N = file_save_AAstds_N)+
geom_point(data = all_fn_std_df, aes(x = AAs,
y = Mean), size = 5, color = "black") +
ggtitle(fl_nm)
lab_std_plt <- Plt_Lab_Stds_N(file_save_stds_N = file_save_stds_N) +
geom_point(data = fn_df[fn_df$smp == cyano,], aes(x = AAs,
y = Corrected_delta_15_N), size = 5, color = "black") +
geom_point(data = fn_df[fn_df$smp == fish_muscle,], aes(x = AAs,
y = Corrected_delta_15_N), size = 5, color = "darkgray")
}
grid.arrange(lab_aa_plt, lab_std_plt)
all_smp_plts <- list(std_plt, smp_plt)
lab_compair_plts <- list(lab_aa_plt, lab_std_plt)
grid.arrange(arrangeGrob(grobs = all_smp_plts, ncol = 1),
arrangeGrob(grobs = lab_compair_plts, ncol = 1),
ncol = 2)
outs <- list(all_fn_std_df = all_fn_std_df,
all_fn_df = all_fn_df)
return(outs)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.