fit_pl: fit_pl

Description Usage Arguments Value

View source: R/fit_pl.R

Description

fit_pl

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
fit_pl(
  ydata,
  xdata,
  weights = 1,
  fitfun = pl3model,
  likelihood = loglik_binom_n,
  quasi = F,
  starting_values = c(a = 0.5, b = -10, c = 0.2),
  lower = c(-Inf, -Inf, 0),
  upper = c(Inf, Inf, 1)
)

## S3 method for class 'pl_fit'
coef(object, ...)

## S3 method for class 'pl_fit'
se(x)

## S3 method for class 'pl_fit'
fitted(object, ...)

## S3 method for class 'pl_fit'
confint(object, parm, level = 0.95, ...)

## S3 method for class 'pl_fit'
predict(object, newdata = NULL, scale = c("linear", "logit"), se = TRUE, ...)

## S3 method for class 'pl_fit'
logist_confint(x, newdata = NULL, level = 0.95, ...)

## S3 method for class 'pl_fit'
logist_predint(
  x,
  newdata = NULL,
  level = 0.95,
  likelihood = loglik_binom_n,
  ...
)

Arguments

ydata

response variable

xdata

independent variable

weights

weights vector (optional).

fitfun

fitting function

likelihood

likelihood function

quasi

compute overdispersion and use quasilikelihood model to build confidence intervals

starting_values

(named) vector of starting values for optimization

lower

vector of lower bounds for parameters

upper

vector of upper bounds for parameters

object

an object of class pl_fit

...

additional argument(s)

x

an object of class pl_fit

parm

a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.

level

confidence level 1-alpha for prediction

newdata

an optional vector of observed independent variables with which to predict

scale

scale on which to predict, either linear or logit scale

se

whether to return the standard errors of the predictions or not

Value

pl_fit object


cbg-ethz/WWdPCR documentation built on Jan. 23, 2022, 2:45 p.m.