Description Usage Arguments Value
fit_pl
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | fit_pl(
ydata,
xdata,
weights = 1,
fitfun = pl3model,
likelihood = loglik_binom_n,
quasi = F,
starting_values = c(a = 0.5, b = -10, c = 0.2),
lower = c(-Inf, -Inf, 0),
upper = c(Inf, Inf, 1)
)
## S3 method for class 'pl_fit'
coef(object, ...)
## S3 method for class 'pl_fit'
se(x)
## S3 method for class 'pl_fit'
fitted(object, ...)
## S3 method for class 'pl_fit'
confint(object, parm, level = 0.95, ...)
## S3 method for class 'pl_fit'
predict(object, newdata = NULL, scale = c("linear", "logit"), se = TRUE, ...)
## S3 method for class 'pl_fit'
logist_confint(x, newdata = NULL, level = 0.95, ...)
## S3 method for class 'pl_fit'
logist_predint(
x,
newdata = NULL,
level = 0.95,
likelihood = loglik_binom_n,
...
)
|
ydata |
response variable |
xdata |
independent variable |
weights |
weights vector (optional). |
fitfun |
fitting function |
likelihood |
likelihood function |
quasi |
compute overdispersion and use quasilikelihood model to build confidence intervals |
starting_values |
(named) vector of starting values for optimization |
lower |
vector of lower bounds for parameters |
upper |
vector of upper bounds for parameters |
object |
an object of class |
... |
additional argument(s) |
x |
an object of class |
parm |
a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered. |
level |
confidence level 1-alpha for prediction |
newdata |
an optional vector of observed independent variables with which to predict |
scale |
scale on which to predict, either linear or logit scale |
se |
whether to return the standard errors of the predictions or not |
pl_fit object
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.