Description Usage Arguments Details Value Author(s) See Also Examples
Calclate AIC/BIC for a given network graph (should be transitively closed). The number of free parameters equals the number of unknown edges in the network graph.
1 | network.AIC(network,Pm=NULL,k=length(nodes(network$graph)),verbose=TRUE)
|
network |
a nem object (e.g. 'pairwise') |
Pm |
prior over models (n x n matrix). If NULL, then a matrix of 0s is assumed |
k |
penalty per parameter in the AIC/BIC calculation. k = 2 for classical AIC |
verbose |
print out the result |
For k = log(n) the BIC (Schwarz criterion) is computed. Usually this function is not called directly but from nemModelSelection
AIC/BIC value
Holger Froehlich
1 2 3 4 5 6 7 8 | data("BoutrosRNAi2002")
D = BoutrosRNAiDiscrete[,9:16]
control = set.default.parameters(unique(colnames(D)), para=c(0.13,0.05))
res1 <- nem(D, control=control)
network.AIC(res1)
control$lambda=100 # enforce sparsity
res2 <- nem(D,control=control)
network.AIC(res2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.