library(data.table)
library(randomForest)
library(spdep)
GIToBePredicted="./VigieChiro/GIS/GI_SysGrid__20000.csv"
DateToBePredicted="15/06/2018" #date of prediction
NumCoord=40 #number of coordinates projections (must be a division of 360)
ModRF_file="./VigieChiro/ModPred/ModRF_nb_contacts_DataSpSL_Urosp_90_Data.csv.learner"
load(ModRF_file)
Sys.time()
CoordSIG=fread(GIToBePredicted)
Sys.time()
CoordSIG=subset(CoordSIG,is.na(CoordSIG$SpAltiS)==F)
CoordSIG=subset(CoordSIG,is.na(CoordSIG$SpBioC1)==F)
CoordSIG$SpGite=0
CoordSIG$SpFDate=yday(as.Date(DateToBePredicted
,format="%d/%m/%Y"))
CoordDS=as.matrix(cbind(CoordSIG$Group.1,CoordSIG$Group.2))
for (a in 0:(as.numeric(NumCoord)-1))
{
Coordi=Rotation(CoordDS,angle=pi*a/as.numeric(NumCoord))
#print(plot(Coordi[,1],CoordDS[,1],main=as.character(a)))
#print(plot(Coordi[,1],CoordDS[,2],main=as.character(a)))
CoordSIG=cbind(CoordSIG,Coordi[,1])
names(CoordSIG)[ncol(CoordSIG)]=paste0("SpCoord",a)
}
test=match(row.names(ModRF$importance),names(CoordSIG))
MissingVar=subset(row.names(ModRF$importance),is.na(test))
if(length(MissingVar)>0)
{
for (j in 1:length(MissingVar))
{
CoordSIG$temp=0
names(CoordSIG)[ncol(CoordSIG)]=MissingVar[j]
}
}
PredLoc=predict(ModRF,CoordSIG)
PredAll=predict(ModRF,CoordSIG,predict.all=T)[[2]]
PredErr=apply(PredAll,MARGIN=1,FUN=sd)
coordinates(CoordSIG) <- c("Group.1", "Group.2")
proj4string(CoordSIG) <- CRS("+init=epsg:4326") # WGS 84
CoordSIG$pred=PredLoc
CoordSIG$err=PredErr
spplot(CoordSIG,zcol="pred",main=basename(ModRF_file))
#spplot(CoordSIG,zcol="err")
Coord=as.data.table(CoordSIG)
Coord=subset(Coord,select=c("Group.1","Group.2","pred","err"))
#print(spplot(DataSaison,zcol="pred",main=ListSp[i]))
FilName=paste0("./VigieChiro/ModPred/Sp_"
,gsub(".learner","",basename(ModRF_file))
,basename(GIToBePredicted))
fwrite(Coord,paste0(FilName,".csv"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.