## Changelog:
# CG 0.0.4 2023-04-19: inlcude the n_grid argument
# remove check of var_names towards the end of the script
# CG 0.0.3 2023-04-19: allow for arguments model, use_model_values,
# include if statements to check which arguments to use
# check if argument model is of admissible class
# CG 0.0.2 2022-01-13: function now computes the values of the pdf
# over a grid of -3*SD ; +3*SD
# changed structure of internal_list
# cleaned up code (documentation, 80 char per line)
# changed dot-case to snake-case
# MH 0.0.1 2021-11-30: chunked from interventional_density() 0.0.5 2021-11-24
## Documentation
#' @title Calculate PDF of Interventional Distribution
#' @description Calculate the probability density function (pdf) of the
#' interventional distribution. The values are computed pointwise over a grid of
#' values for each univariate variable separately (i.e., the pdfs of the
#' marginal distributions). See, for example, Eqs. 9, 14, and 22c in Gische and
#' Voelkle (2022).
#' @param E Numeric vector of mean values.
#' @param V Numeric vector of variances.
#' @param var_names Character vector of variable names.
#' @param n_grid Integer number indicating the number of values (in the grid)
#' for which the pdf should be evaluated.
#' @param model Object of class \code{causalSEM}.
#' @param use_model_values Logical value indicating if model values should be
#' used (TRUE) in calculation. Default: FALSE.
#' @param verbose Integer number describing the verbosity of console output.
#' Admissible values: 0: no output (default), 1: user messages,
#' 2: debugging-relevant messages.
#' @return List of numeric vectors (named if \code{var_names} are supplied)
#' containing the values of the marginal pdf of each outcome variable (over
#' a grid of values).
#' @references Gische, C., Voelkle, M.C. (2022) Beyond the Mean: A Flexible
#' Framework for Studying Causal Effects Using Linear Models. Psychometrika 87,
#' 868–901. https://doi.org/10.1007/s11336-021-09811-z
## Function definition
calculate_interventional_density <- function(E = NULL,
V = NULL,
var_names = NULL,
n_grid = NULL,
model = NULL,
use_model_values = FALSE,
verbose = NULL){
# function name
fun.name <- "calculate_interventional_density"
# function version
fun.version <- "0.0.4 2023-04-21"
# function name+version
fun.name.version <- paste0( fun.name, " (", fun.version, ")" )
# if model is provided, check if it of admissible class
if ( !is.null(model)){
# get class of model object
model_class <- class(model)
# set supported classes of model objects
supported_model_classes <- c( "causalSEM" )
# check if argument model is supported
if(!any(model_class %in% supported_model_classes)) stop(
paste0(
fun.name.version, ": model of class ", model_class,
" not supported. Supported fit objects are: ",
paste(supported_model_classes, collapse = ", ")
)
)
verbose <- model$control$verbose
}
if (!is.null(model) && use_model_values == TRUE){
E <- model$interventional_distribution$means$values[,1]
V <-
diag(model$interventional_distribution$covariance_matrix$values)
var_names <- model$info_model$var_names
n_grid <- NULL
} else if (use_model_values == FALSE) {
# TODO: include argument check
# TODO: require var_names as an obligatory argument!
verbose <- handle_verbose_argument(verbose)
E <- E
V <- V
var_names <- var_names
n_grid <- n_grid
}
# console output
if( verbose >= 2 ) cat( paste0( "start of function ", fun.name.version, " ",
Sys.time(), "\n" ) )
# standard deviations (sqrt of diagonal elements of V)
sds <- sqrt( V )
# calculate pdfs for each variable
# CG 0.0.2 2022-01-13 commented out this part
# pdfs <- mapply( function( mean, sd ){ stats::dnorm( mean, mean=mean, sd=sd ) }, E,
# sds, SIMPLIFY=TRUE )
# CG 0.0.2 2022-01-13 introduced this part
# generate x values and calculate pdfs for each variable, return list
# TODO: use the n_grid argument here when defining the x sequence
pdfs <- mapply( function( mean, sd ){
# generate x-axis values
if (is.null(n_grid)){
x <- seq( -3*sd, 3*sd, length.out = 5 ) + mean
} else {
x <- seq( -3*sd, 3*sd, length.out = n_grid ) + mean
}
# get pdf values
pdf.values <- stats::dnorm( x, mean=mean, sd=sd )
# return
as.matrix( data.frame( "x"=x, "pdf.values"=pdf.values ) )
}, E, sds, SIMPLIFY=FALSE )
# set variable names for list elements
# CG 0.0.4 2023-04-19: remove check of var_names towards the end of the script
#if( !is.null( var_names ) ){
names( pdfs ) <- var_names
#}
# console output
if( verbose >= 2 ) cat( paste0( " end of function ", fun.name.version, " ",
Sys.time(), "\n" ) )
# return internal list
return( pdfs )
}
### development
# Rfiles <- list.files( "c:/Users/martin/Dropbox/68_causalSEM/04_martinhecht/R", pattern="*.R", full.names = TRUE )
# Rfiles <- Rfiles[ ! grepl("calculate_interventional_density.R", Rfiles) ]
# for( Rfile in Rfiles ){
# cat( paste0( Rfile, "\n" ) ); flush.console()
# source( Rfile )
# }
# calculate_interventional_density( 1, 2, "var1", verbose=2 )
# calculate_interventional_density( 1, 2, "var1", verbose=0 )
# calculate_interventional_density( 1, 2, NULL, verbose=0 )
# calculate_interventional_density( c(1,1), c(2,2), c("var1","var2"), verbose=0 )
### test
# require( testthat )
# test_file("../tests/testthat/XXXXXXX.R")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.