#' @title
#' MCMC algorithm for Dynamic Multilayer undirected weighted graphs
#'
#' @description
#' \code{mcmc_d_0_w_1} Implements a Gibbs sampler MCMC algorithm for Dynamic Multilayer undirected weighted graphs.
#'
#' @param y_ijtk Array. Network data, with entry \code{y_ijtk[i,j,t,k]} representing the link from node i to node j at time t in layer k. 0 indicates no link.
#' @param node_all Character vector. Id's of nodes in the network.
#' @param time_all Numeric vector. Timestamps of all relevant epochs for the MCMC, those observed and those for forecast
#' @param layer_all Character vector. Id's of layers in the network.
#' @param x_ijtkp Array. Edge Specific external covariates.
#' @param H_dim Integer. Latent space dimension.
#' @param R_dim Integer. Latent space dimension, for layer specific latent vectors.
#' @param add_eff_link Boolean. Indicates if dynamic additive effects by node should be considered for links.
#' @param add_eff_weight Boolean. Indicates if dynamic additive effects by node should be considered for edge weights.
#' @param class_dyn String. Specifies prior for latent elements. "GP" for Gaussian Processes,"nGP" for nested Gaussian Processes.
#' @param delta Positive scalar. Hyperparameter controlling for the smoothness in the dynamic of latent coordinates. Larger=smoother.
#' @param shrink_lat_space Boolean. Indicates if the space should be shrinked probabilistically.
#' @param a_1 Positive scalar. Hyperparameter controlling for number of effective dimensions in the latent space.
#' @param a_2 Positive scalar. Hyperparameter controlling for number of effective dimensions in the latent space.
#' @param procrustes_lat Boolean. Indicates if the latent coordinates should be stabilised using the procustres transformation.
#' @param n_chains_mcmc Integer. Number of parallel MCMC chains.
#' @param n_iter_mcmc Integer. Number of iterations for the MCMC.
#' @param n_burn Integer. Number of iterations discarded as part of the MCMC warming up period at the beginning of the chain.
#' @param n_thin Integer. Number of iterations discarded for thining the chain (reducing the autocorrelation). We keep 1 of every n_thin iterations.
#' @param keep_y_ijtk_imp Boolean. Indicates wheter the chain with imputed missing links will be saved (FALSE by default)
#' @param rds_file String. Indicates a file (.rds) where the output will be saved.
#' @param log_file String. Indicates a file (.txt) where the log of the process will be saved.
#' @param quiet_mcmc Boolean. Indicates if silent mode is preferes, if \code{FALSE} progress update is displayed.
#' @param parallel_mcmc Boolean. Indicates if the mcmc should be processed in parallel.
#'
#' @import foreach
#' @import BayesLogit
#' @importFrom MCMCpack procrustes
#'
#' @keywords internal
#'
mcmc_d_0_w_1 <- function( y_ijtk,
node_all, time_all, layer_all,
x_ijtkp=NULL,
H_dim=10, R_dim=10,
add_eff_link=FALSE,
add_eff_weight=FALSE,
class_dyn=c("GP","nGP")[1],
delta=delta,
shrink_lat_space=FALSE,
a_1=2, a_2=2.5,
procrustes_lat=FALSE,
n_chains_mcmc=1,
n_iter_mcmc=10000, n_burn=floor(n_iter_mcmc/4), n_thin=3,
keep_y_ijtk_imp=FALSE,
rds_file=NULL, log_file=NULL,
quiet_mcmc=FALSE,
parallel_mcmc=FALSE ) {
# This software only deal with binary edges (non-weighted)
y_ijtk[y_ijtk>0] <- 1
V_net <- dim(y_ijtk)[1]
T_net <- dim(y_ijtk)[3]
K_net <- dim(y_ijtk)[4]
# assume no self-edges
diag_y_idx <- matrix(FALSE,V_net,V_net); diag(diag_y_idx)<-TRUE
diag_y_idx <- array(diag_y_idx,dim=dim(y_ijtk))
y_ijtk[diag_y_idx] <- 0
lowtri_y_idx <- lower.tri(y_ijtk[,,1,1])
lowtri_y_idx <- array(lowtri_y_idx,dim=dim(y_ijtk))
# Symmetric adjacency matrices
for( k in 1:K_net) {
for( t in 1:T_net) { #t<-1;k<-1
if(!isSymmetric(y_ijtk[,,t,k])){
aux <- nato0(y_ijtk[,,t,k])+nato0(t(y_ijtk[,,t,k]))
aux[is.na(y_ijtk[,,t,k])&is.na(t(y_ijtk[,,t,k]))] <- NA
}
}
}; rm(k,t)
# Remove upper triangular matrices
y_ijtk[!lowtri_y_idx] <- NA
V_net <- length(node_all)
T_net <- length(time_all)
K_net <- length(layer_all)
### iterations that will be reported ###
# after burn-in period and thinning
iter_out_mcmc <- seq(from=n_burn+1,to=n_iter_mcmc,by=n_thin)
n_iter_mcmc_out <- length(iter_out_mcmc)
#### Start: MCMC initialization ####
# Edge between actors i and j at time t in layer k
### GAUSSIAN MODEL FOR WEIGHTS ###
# y_ijtk ~ norm( mu_ijtk[t,k] , sigma_k[k]^2 )
# mu_ijtk[t,k] = theta_tk[t,k] + t(u_ith[i,t,]) * v_ith[j,t,] + t(u_ithk[i,t,,k]) * v_ithk[j,t,,k]
# u_ith[i,,h] ~ Norm( 0 , C(t,t) )
# theta_tk[,k] ~ Norm( 0 , C(t,t) )
# Baseline parameter for weights #
# at time t for layer k
theta_tk <- matrix( data=runif(T_net*K_net),
nrow=T_net,
ncol=K_net )
theta_tk_mcmc <- array( NA, dim=c(T_net,K_net,n_iter_mcmc_out) )
### Dynamic additive effects for each node ###
sp_weight_it_shared <- array(runif(V_net*T_net),dim=c(V_net,T_net))
if(K_net>1){
sp_weight_itk <- array(runif(V_net*T_net*K_net),dim=c(V_net,T_net,K_net))
sp_weight_itk_mcmc <- array(NA,dim=c(V_net,T_net,K_net,n_iter_mcmc_out))
} else {
sp_weight_itk <- NULL
sp_weight_itk_mcmc <- NULL
}
# Latent coordinates #
# shared: hth coordinate of actor v at time t shared across the different layers
# One latent space for each direction #
uv_ith_shared <- array( data=runif(V_net*T_net*H_dim,-1,1),
dim=c(V_net,T_net,H_dim) )
uv_ith_shared_mcmc <- array(NA,c(V_net,T_net,H_dim,n_iter_mcmc_out))
# by layer: hth coordinate of actor v at time t specific to layer k
if( K_net>1 ){
# One latent space for each direction #
uv_ithk <- array( data=runif(V_net*T_net*R_dim*K_net),
dim=c(V_net,T_net,R_dim,K_net) )
uv_ithk_mcmc <- array(NA,c(V_net,T_net,R_dim,K_net,n_iter_mcmc_out))
} else {
uv_ithk <- NULL
uv_ithk_mcmc <- NULL
}
# Weight variance for layer k
sigma_k <- apply( y_ijtk, MARGIN=4, FUN=sd, na.rm=T)
sigma_k_prop_int <- rep(1.25,K_net) # length of proposal distribution to sample sigma_k
sigma_k_mcmc <- matrix( NA, nrow=K_net, ncol=n_iter_mcmc_out )
# Covariance matrix prior for latent coordinates
cov_gp_prior <- outer( time_all, time_all, FUN=function(x,y,k=delta){ exp(-((x-y)/delta)^2) } )
diag(cov_gp_prior) <- diag(cov_gp_prior) + 1e-3 # numerical stability
cov_gp_prior_inv <- solve(cov_gp_prior)
# Mean of the weight between actors i and j at time t in layer k
mu_ijtk <- get_linpred_ijtk( baseline_tk=theta_tk,
add_eff_it_shared=sp_weight_it_shared,
add_eff_itk=sp_weight_itk,
coord_ith_shared=uv_ith_shared,
coord_ithk=uv_ithk,
directed=FALSE )
mu_ijtk_mcmc <- array(NA, dim=c(V_net,V_net,T_net,K_net,n_iter_mcmc_out))
## Shrinkage Parameters ##
# shared #
nu_shrink_shared <- matrix(1, nrow=H_dim, ncol=1 )
if(shrink_lat_space){
nu_shrink_shared[1,1] <- rgamma(n=1,shape=a_1,rate=1); nu_shrink_shared[-1,1] <- rgamma(n=H_dim-1,shape=a_2,rate=1)
}
rho_h_shared <- matrix(cumprod(nu_shrink_shared), nrow=H_dim, ncol=1 )
if(shrink_lat_space){
rho_h_shared_mcmc <- matrix(NA, nrow=H_dim, ncol=n_iter_mcmc_out )
} else {
rho_h_shared_mcmc <- NULL
}
# layer-specific #
if( K_net>1 ){
nu_shrink_k <- matrix(1, nrow=R_dim, ncol=K_net )
if(shrink_lat_space){
nu_shrink_k[1,] <- rgamma(n=K_net,shape=a_1,rate=1); nu_shrink_k[-1,] <- rgamma(n=K_net*(R_dim-1),shape=a_2,rate=1)
}
rho_h_k <- matrix(apply(nu_shrink_k,2,cumprod), nrow=R_dim, ncol=K_net )
if(shrink_lat_space){
rho_h_k_mcmc <- array( NA, dim=c(R_dim,K_net,n_iter_mcmc_out) )
} else {
rho_h_k_mcmc <- NULL
}
} else {
nu_shrink_k <- NULL
rho_h_k <- NULL
rho_h_k_mcmc <- NULL
}
### LOGISTIC MODEL FOR LINKS ###
# Augmented Polya-gamma data
w_ijtk <- y_ijtk
w_ijtk[] <- 0
# Baseline parameter #
# at time t for layer k
eta_tk <- matrix( #data=0,
data=runif(T_net*K_net),
nrow=T_net,
ncol=K_net )
eta_tk_mcmc <- array( NA, dim=c(T_net,K_net,n_iter_mcmc_out) )
### Dynamic additive effects for each node ###
sp_link_it_shared <- array(runif(V_net*T_net),dim=c(V_net,T_net))
if(K_net>1){
sp_link_itk <- array(runif(V_net*T_net*K_net),dim=c(V_net,T_net,K_net))
sp_link_itk_mcmc <- array(NA,dim=c(V_net,T_net,K_net,n_iter_mcmc_out))
} else {
sp_link_itk <- NULL
sp_link_itk_mcmc <- NULL
}
# Latent coordinates #
# shared coordinates #
# hth coordinate of actor v at time t shared across the different layers #
ab_ith_shared <- array( #data=0,
data=runif(V_net*T_net*H_dim,-1,1),
dim=c(V_net,T_net,H_dim) )
ab_ith_shared_mcmc <- array(NA,c(V_net,T_net,H_dim,n_iter_mcmc_out))
# layer-specific coordinates #
# layer-specific: hth coordinate of actor v at time t specific to layer k #
if( K_net>1 ){
ab_ithk <- array( #data=0,
data=runif(V_net*T_net*R_dim*K_net),
dim=c(V_net,T_net,R_dim,K_net) )
ab_ithk_mcmc <- array(NA,c(V_net,T_net,R_dim,K_net,n_iter_mcmc_out))
} else {
ab_ithk <- NULL
ab_ithk_mcmc <- NULL
}
# Covariance matrix prior for latent coordinates
cov_gp_prior <- outer( time_all, time_all, FUN=function(x,y,k=delta){ exp(-((x-y)/delta)^2) } )
diag(cov_gp_prior) <- diag(cov_gp_prior) + 1e-3 # numerical stability
cov_gp_prior_inv <- solve(cov_gp_prior)
# Predictor coefficients
# to be implemented
# Linear predictor for the probability of an edge between actors i and j at time t in layer k
gamma_ijtk <- get_linpred_ijtk( baseline_tk=eta_tk,
add_eff_it_shared=sp_link_it_shared,
add_eff_itk=sp_link_itk,
coord_ith_shared=ab_ith_shared,
coord_ithk=ab_ithk,
directed=FALSE )
gamma_ijtk[!lowtri_y_idx] <- NA
# Probability of an edge between actors i and j at time t in layer k
pi_ijtk_mcmc <- array(NA, dim=c(V_net,V_net,T_net,K_net,n_iter_mcmc_out))
## Shrinkage Parameters ##
# shared #
nu_shrink_shared <- matrix(1, nrow=H_dim, ncol=1 )
if(shrink_lat_space){
nu_shrink_shared[1,1] <- rgamma(n=1,shape=a_1,rate=1); nu_shrink_shared[-1,1] <- rgamma(n=H_dim-1,shape=a_2,rate=1)
}
tau_h_shared <- matrix(cumprod(nu_shrink_shared), nrow=H_dim, ncol=1 )
if(shrink_lat_space){
tau_h_shared_mcmc <- matrix(NA, nrow=H_dim, ncol=n_iter_mcmc_out )
} else {
tau_h_shared_mcmc <- NULL
}
# layer-specific #
if( K_net>1 ){
nu_shrink_k <- matrix(1, nrow=R_dim, ncol=K_net )
if(shrink_lat_space){
nu_shrink_k[1,] <- rgamma(n=K_net,shape=a_1,rate=1); nu_shrink_k[-1,] <- rgamma(n=K_net*(R_dim-1),shape=a_2,rate=1)
}
tau_h_k <- matrix(apply(nu_shrink_k,2,cumprod), nrow=R_dim, ncol=K_net )
if(shrink_lat_space){
tau_h_k_mcmc <- array( NA, dim=c(R_dim,K_net,n_iter_mcmc_out) )
} else {
tau_h_k_mcmc <- NULL
}
} else {
nu_shrink_k <- NULL
tau_h_k <- NULL
tau_h_k_mcmc <- NULL
}
#### End: MCMC initialization ####
# Keep execution time #
mcmc_clock <- Sys.time()
if( !is.null(log_file) ) {
cat("MCMC Starting time:\n",as.character(mcmc_clock),"\n\n",
"---------------------------\n\n\n",
"iter_i , mcmc_acum_minutes , Sys.time \n",
file=log_file, append=T )
}
### Missing links ###
y_ijtk_miss <- FALSE
y_ijtk_miss_idx <- NULL
y_ijtk_imp_mcmc <- NULL
if( any(is.na(y_ijtk)) ) {
y_ijtk_miss <- TRUE
# identifies missing data indices
y_ijtk_miss_idx <- which( is.na(y_ijtk), arr.ind=TRUE )
colnames(y_ijtk_miss_idx) <- c("i","j","t","k")
# Only consider missing data in the lower diagonal adjacency
y_ijtk_miss_idx <- y_ijtk_miss_idx[y_ijtk_miss_idx[,1]>y_ijtk_miss_idx[,2],]
# MCMC chain for missing values #
if(keep_y_ijtk_imp){
# CAUTION: may take too much disk space
y_ijtk_imp_mcmc <- matrix( NA, nrow = n_iter_mcmc_out, ncol=nrow(y_ijtk_miss_idx) )
} else {
y_ijtk_imp_mcmc <- NULL
}
}
#### Start: MCMC Sampling ####
if(!quiet_mcmc){ cat("Sampling MCMC ...\n") }
n_prop_sigma <- n_accept_sigma <- rep(0,K_net) # counting to calculate acceptance rate in MH step for sigma_k
for ( iter_i in 1:n_iter_mcmc) {
#cat(iter_i,",")
##### SAMPLING WEIGHTS #####
### Step W1. Sample theta_tk from its conditional N-variate Gaussian posterior ###
out_aux <- sample_baseline_tk_weight( theta_tk=theta_tk,
y_ijtk=y_ijtk, mu_ijtk=mu_ijtk,
sigma_k=sigma_k,
theta_t_cov_prior_inv=cov_gp_prior_inv,
directed=FALSE )
theta_tk <- out_aux$theta_tk
mu_ijtk <- out_aux$mu_ijtk # This updates mu_ijtk except for the diagonal
mu_ijtk[!lowtri_y_idx] <- NA
# MCMC chain #
if(is.element(iter_i,iter_out_mcmc)){
theta_tk_mcmc[,,match(iter_i,iter_out_mcmc)] <- theta_tk
}
# # Checking linear predictor mu_ijtk
# mu_ijtk[!lowtri_y_idx] <- NA
# mu_ijtk_old <- mu_ijtk
# mu_ijtk <- get_linpred_ijtk( baseline_tk=theta_tk,
# coord_ith_shared=uv_ith_shared,
# coord_ithk=uv_ithk,
# directed=FALSE )
# mu_ijtk[!lowtri_y_idx] <- NA
# all.equal(mu_ijtk,mu_ijtk_old)
### Step W2. For each unit, block-sample the set of time-varying latent coordinates x_ith ###
### SHARED Latent Coordinates ###
out_aux <- sample_coord_ith_shared_weight( uv_ith_shared=uv_ith_shared,
uv_t_sigma_prior_inv=cov_gp_prior_inv,
tau_h=rho_h_shared,
y_ijtk=y_ijtk, mu_ijtk=mu_ijtk,
sigma_k=sigma_k,
directed=FALSE )
uv_ith_shared <- out_aux$uv_ith_shared
mu_ijtk <- out_aux$mu_ijtk
mu_ijtk[!lowtri_y_idx] <- NA
# MCMC chain #
if(is.element(iter_i,iter_out_mcmc)){
uv_ith_shared_mcmc[[1]][,,,match(iter_i,iter_out_mcmc)] <- uv_ith_shared[[1]]
uv_ith_shared_mcmc[[2]][,,,match(iter_i,iter_out_mcmc)] <- uv_ith_shared[[2]]
}
### LAYER SPECIFIC Latent Coordinates ###
if( K_net>1 ) {
### Step W3A. For each unit, block-sample the EDGE SPECIFIC set of time-varying latent coordinates uv_ithk ###
out_aux <- sample_coord_ithk_weight( uv_ithk=uv_ithk,
uv_t_sigma_prior_inv=cov_gp_prior_inv,
tau_h=rho_h_k,
y_ijtk=y_ijtk, mu_ijtk=mu_ijtk,
sigma_k=sigma_k,
directed=FALSE )
uv_ithk <- out_aux$uv_ithk
mu_ijtk <- out_aux$mu_ijtk
# mu_ijtk[!lowtri_y_idx] <- NA
# MCMC chain for uv_ithk #
if(is.element(iter_i,iter_out_mcmc)){
uv_ithk_mcmc[[1]][,,,,match(iter_i,iter_out_mcmc)] <- uv_ithk[[1]]
uv_ithk_mcmc[[2]][,,,,match(iter_i,iter_out_mcmc)] <- uv_ithk[[2]]
}
}
### Step W3. Sample weight variance ###
sigma_k_old <- sigma_k
sigma_k <- sample_var_weight( sigma_k=sigma_k,
sigma_k_prop_int=sigma_k_prop_int,
y_ijtk=y_ijtk, mu_ijtk=mu_ijtk,
directed=FALSE )
n_prop_sigma = n_prop_sigma+1
n_accept_sigma = n_accept_sigma + (sigma_k_old!=sigma_k)
# MCMC chain for sigma_k #
if(is.element(iter_i,iter_out_mcmc)){
sigma_k_mcmc[,match(iter_i,iter_out_mcmc)] <- sigma_k
}
# MCMC chain for mu_ijtk #
if(is.element(iter_i,iter_out_mcmc)){
mu_ijtk_mcmc[,,,,match(iter_i,iter_out_mcmc)] <- mu_ijtk
}
##### SAMPLING LINKS #####
### Step L1. Update each augmented data w_ijtk from the full conditional Polya-gamma posterior ###
w_ijtk <- sample_pg_w_ijtk_link( w_ijtk=w_ijtk,
gamma_ijtk=gamma_ijtk,
directed=FALSE )
### Step L2_add_eff_shared. Sample global additive effects ###
browser()
out_aux <- sample_add_eff_it_shared_link( sp_it_shared=sp_link_it_shared,
sp_t_cov_prior_inv=cov_gp_prior_inv,
y_ijtk=y_ijtk, w_ijtk=w_ijtk, gamma_ijtk=gamma_ijtk,
directed=FALSE )
sp_link_it_shared <- out_aux$sp_it_shared
gamma_ijtk <- out_aux$gamma_ijtk
gamma_ijtk[!lowtri_y_idx] <- NA
# MCMC chain #
if(is.element(iter_i,iter_out_mcmc)){
sp_link_it_shared_mcmc[,,match(iter_i,iter_out_mcmc)] <- eta_tk
}
# Checking consistency of linear predictor gamma_ijtk
# gamma_ijtk_old <- gamma_ijtk
# gamma_ijtk_old[!lowtri_y_idx] <- NA
# gamma_ijtk <- get_linpred_ijtk( baseline_tk=eta_tk,
# add_eff_it_shared=sp_link_it_shared,
# add_eff_itk=sp_link_itk,
# coord_ith_shared=ab_ith_shared,
# coord_ithk=ab_ithk,
# directed=FALSE )
# gamma_ijtk[!lowtri_y_idx] <- NA
# all.equal(gamma_ijtk,gamma_ijtk_old)
### Step L2_add_eff_itk. Sample layer-specific additive effects ###
if(!is.null(sp_link_itk)){
out_aux <- sample_add_eff_itk_link( sp_itk=sp_link_itk,
sp_t_cov_prior_inv=cov_gp_prior_inv,
y_ijtk=y_ijtk, w_ijtk=w_ijtk, gamma_ijtk=gamma_ijtk,
directed=FALSE )
sp_link_itk <- out_aux$sp_itk
gamma_ijtk <- out_aux$gamma_ijtk
# MCMC chain #
if(is.element(iter_i,iter_out_mcmc)){
sp_link_itk_mcmc[,,,match(iter_i,iter_out_mcmc)] <- eta_tk
}
}
### Step L2_mu. Sample eta_tk from its conditional N-variate Gaussian posterior ###
out_aux <- sample_baseline_tk_link( eta_tk=eta_tk,
y_ijtk=y_ijtk, w_ijtk=w_ijtk, gamma_ijtk=gamma_ijtk,
eta_t_cov_prior_inv=cov_gp_prior_inv,
directed=FALSE )
eta_tk <- out_aux$eta_tk
gamma_ijtk <- out_aux$gamma_ijtk # This updates ONLY the lower triangular matrices in gamma_ijtk
gamma_ijtk[!lowtri_y_idx] <- NA
# MCMC chain #
if(is.element(iter_i,iter_out_mcmc)){
eta_tk_mcmc[,,match(iter_i,iter_out_mcmc)] <- eta_tk
}
# # Linear predictor for the probability of an edge between actors i and j at time t in layer k #
# gamma_ijtk_old <- gamma_ijtk
# gamma_ijtk <- get_linpred_ijtk( baseline_tk=eta_tk,
# coord_ith_shared=ab_ith_shared,
# coord_ithk=ab_ithk,
# directed=FALSE )
# gamma_ijtk[!lowtri_y_idx] <- NA
# all.equal(gamma_ijtk,gamma_ijtk_old)
### Step L2_beta. Sample beta_z_layer and beta_z_edge from its conditional N-variate Gaussian posterior ###
# to be implemented
### Step L3. For each unit, block-sample the set of time-varying latent coordinates x_ith ###
### SHARED Latent Coordinates ###
out_aux <- sample_coord_ith_shared_link( ab_ith_shared=ab_ith_shared,
ab_t_sigma_prior_inv=cov_gp_prior_inv,
tau_h=tau_h_shared,
y_ijtk=y_ijtk,
w_ijtk=w_ijtk,
gamma_ijtk=gamma_ijtk )
ab_ith_shared <- out_aux$ab_ith_shared
gamma_ijtk <- out_aux$gamma_ijtk
# Procrustres transform
if( procrustes_lat ){
if( (iter_i==n_burn) | (iter_i==1 & n_burn==0) ) {
ab_ith_shared_ref <- foreach::foreach(t=1:T_net,.combine="rbind") %do%{
ab_ith_shared[,t,]
}
} else if(iter_i>n_burn) {
ab_ith_shared_temp <- foreach::foreach(t=1:T_net,.combine="rbind") %do% {
ab_ith_shared[,t,]
}
# procr <- vegan::procrustes(X=ab_ith_shared_ref,Y=ab_ith_shared_temp,scale=FALSE)$Yrot
procr <- MCMCpack::procrustes(X=ab_ith_shared_temp,Xstar=ab_ith_shared_ref)$X.new
for(t in 1:T_net){ # t<-2
ab_ith_shared[,t,] <- procr[((t-1)*V_net)+(1:V_net),]
}; rm(t)
# update linear predictor
gamma_ijtk <- get_linpred_ijtk( baseline_tk=eta_tk,
coord_ith_shared=ab_ith_shared,
coord_ithk=ab_ithk,
directed=FALSE )
# gamma_ijtk[!lowtri_y_idx] <- NA
}
}
# MCMC chain #
if(is.element(iter_i,iter_out_mcmc)){
ab_ith_shared_mcmc[,,,match(iter_i,iter_out_mcmc)] <- ab_ith_shared
}
### LAYER SPECIFIC Latent Coordinates ###
if( K_net>1 ) {
### Step L3A. For each unit, block-sample the EDGE SPECIFIC set of time-varying latent coordinates ab_ithk ###
out_aux <- sample_coord_ithk_link( ab_ithk=ab_ithk,
ab_t_sigma_prior_inv=cov_gp_prior_inv,
tau_h=tau_h_k,
y_ijtk=y_ijtk,
w_ijtk=w_ijtk,
gamma_ijtk=gamma_ijtk )
ab_ithk <- out_aux$ab_ithk
gamma_ijtk <- out_aux$gamma_ijtk
# Procrustres transform
if( procrustes_lat ){
if( (iter_i==n_burn) | (iter_i==1 & n_burn==0) ) {
ab_ithk_ref <- foreach::foreach(k=1:K_net,.combine="rbind") %:%
foreach::foreach(t=1:T_net,.combine="rbind") %do% {
ab_ithk[,t,,k]
}
} else if(iter_i>n_burn) {
ab_ithk_tmp <- foreach::foreach(k=1:K_net,.combine="rbind") %:%
foreach::foreach(t=1:T_net,.combine="rbind") %do% {
ab_ithk[,t,,k]
}
# all.equal(ab_ithk[,t,,k],ab_ithk_tmp[((k-1)*(T_net*V_net)+(t-1)*V_net)+(1:V_net),])
# procr <- vegan::procrustes(X=ab_ithk_ref,Y=ab_ithk_tmp,scale=FALSE)$Yrot
procr <- MCMCpack::procrustes(X=ab_ithk_tmp, Xstar=ab_ithk_ref )$X.new
for(k in 1:K_net){
for(t in 1:T_net){
ab_ithk[,t,,k] <- procr[((k-1)*(T_net*V_net)+(t-1)*V_net)+(1:V_net),]
}}; rm(t,k)
# update linear predictor
gamma_ijtk <- get_linpred_ijtk( baseline_tk=eta_tk,
coord_ith_shared=ab_ith_shared,
coord_ithk=ab_ithk,
directed=FALSE )
# gamma_ijtk[!lowtri_y_idx] <- NA
}
}
# MCMC chain #
if(is.element(iter_i,iter_out_mcmc)){
ab_ithk_mcmc[,,,,match(iter_i,iter_out_mcmc)] <- ab_ithk
}
}
### Edge probabilities ###
if(is.element(iter_i,iter_out_mcmc)){
gamma_ijtk[!lowtri_y_idx] <- NA
pi_ijtk_mcmc[,,,,match(iter_i,iter_out_mcmc)] <- plogis(gamma_ijtk)
}
### Impute missing links ###
if( keep_y_ijtk_imp & y_ijtk_miss ) { # requires too much disk memory
# MCMC chain #
if(is.element(iter_i,iter_out_mcmc)){
Y_imp <- rbinom( n=nrow(y_ijtk_miss_idx), size=1, prob=plogis(gamma_ijtk[y_ijtk_miss_idx]) )
y_ijtk_imp_mcmc[match(iter_i,iter_out_mcmc),] <- Y_imp
}
}
### Step L4. Sample the global shrinkage hyperparameters from conditional gamma distributions ###
if(shrink_lat_space){
nu_shrink_shared <- sample_nu_shrink_DynMultiNet_bin( nu_shrink_shared,
a_1, a_2,
ab_ith_shared,
cov_gp_prior_inv )
tau_h_shared <- matrix(cumprod(nu_shrink_shared), nrow=H_dim, ncol=1 )
if(is.element(iter_i,iter_out_mcmc)){
tau_h_shared_mcmc[,match(iter_i,iter_out_mcmc)] <- tau_h_shared
}
if(K_net>1){
for(k in 1:K_net) {
nu_shrink_k[,k] <- sample_nu_shrink_DynMultiNet_bin( nu_shrink_k[,k,drop=F], a_1, a_2,
ab_ithk[,,,k],
cov_gp_prior_inv )
}
tau_h_k <- matrix(apply(nu_shrink_k,2,cumprod), nrow=R_dim, ncol=K_net )
if(is.element(iter_i,iter_out_mcmc)){
tau_h_k_mcmc[,,match(iter_i,iter_out_mcmc)] <- tau_h_k
}
}
}
# display MCMC progress #
if( is.element(iter_i, floor(n_iter_mcmc*seq(0,1,0.05)[-1]) ) ) {
if(!quiet_mcmc){
cat(round(100*iter_i/n_iter_mcmc),"% ",sep="")
}
if( !is.null(log_file) ) {
cat(iter_i," , ", as.numeric(difftime(Sys.time(),mcmc_clock,units="mins"))," , ", as.character(Sys.time()),"\n",
file=log_file,append=TRUE )
}
}
# save MCMC progress #
if( is.element(iter_i, floor(n_iter_mcmc*seq(0,1,0.25)[-1]) ) & iter_i>min(iter_out_mcmc,na.rm=T) ) {
if(!is.null(rds_file)){
dmn_mcmc <- list( y_ijtk=y_ijtk,
directed=TRUE,
weighted=TRUE,
n_chains_mcmc=n_chains_mcmc,
n_iter_mcmc=n_iter_mcmc, n_burn=n_burn, n_thin=n_thin,
H_dim=H_dim, R_dim=R_dim,
delta=delta,
shrink_lat_space=shrink_lat_space,
a_1=a_1, a_2=a_2,
procrustes_lat=procrustes_lat,
node_all=node_all, time_all=time_all, layer_all=layer_all,
# For link probabilities #
pi_ijtk_mcmc=pi_ijtk_mcmc,
eta_tk_mcmc=eta_tk_mcmc,
ab_ith_shared_mcmc=ab_ith_shared_mcmc,
ab_ithk_mcmc=ab_ithk_mcmc,
tau_h_shared_mcmc=tau_h_shared_mcmc,
tau_h_k_mcmc=tau_h_k_mcmc,
# imputed links
y_ijtk_miss_idx=y_ijtk_miss_idx,
y_ijtk_imp_mcmc=y_ijtk_imp_mcmc,
# For link weights #
mu_ijtk_mcmc = mu_ijtk_mcmc,
sigma_k_mcmc = sigma_k_mcmc,
theta_tk_mcmc = theta_tk_mcmc,
uv_ith_shared_mcmc = uv_ith_shared_mcmc,
uv_ithk_mcmc = uv_ithk_mcmc,
rho_h_shared_mcmc=rho_h_shared_mcmc,
rho_h_k_mcmc=rho_h_k_mcmc,
pred_id_layer=NULL, pred_id_edge=NULL,
beta_z_layer_mcmc=NULL,
beta_z_edge_mcmc=NULL )
dmn_mcmc <- structure( dmn_mcmc, class="dmn_mcmc" )
saveRDS(dmn_mcmc,file=rds_file)
}
}
}
if(!quiet_mcmc){cat("\nMCMC finished!\n")}
#### End: MCMC Sampling ####
if( !is.null(log_file) ) {
cat("\n\n---------------------------\n\n",
"Finishing time:\n",as.character(Sys.time()),"\n\n",
file=log_file, append=TRUE)
}
dmn_mcmc <- list( y_ijtk=y_ijtk,
directed=TRUE,
weighted=TRUE,
n_chains_mcmc=n_chains_mcmc,
n_iter_mcmc=n_iter_mcmc, n_burn=n_burn, n_thin=n_thin,
H_dim=H_dim, R_dim=R_dim,
delta=delta,
shrink_lat_space=shrink_lat_space,
a_1=a_1, a_2=a_2,
procrustes_lat=procrustes_lat,
node_all=node_all, time_all=time_all, layer_all=layer_all,
# For link probabilities #
pi_ijtk_mcmc=pi_ijtk_mcmc,
eta_tk_mcmc=eta_tk_mcmc,
ab_ith_shared_mcmc=ab_ith_shared_mcmc,
ab_ithk_mcmc=ab_ithk_mcmc,
tau_h_shared_mcmc=tau_h_shared_mcmc,
tau_h_k_mcmc=tau_h_k_mcmc,
# imputed links
y_ijtk_miss_idx=y_ijtk_miss_idx,
y_ijtk_imp_mcmc=y_ijtk_imp_mcmc,
# For link weights #
mu_ijtk_mcmc = mu_ijtk_mcmc,
sigma_k_mcmc = sigma_k_mcmc,
theta_tk_mcmc = theta_tk_mcmc,
uv_ith_shared_mcmc = uv_ith_shared_mcmc,
uv_ithk_mcmc = uv_ithk_mcmc,
rho_h_shared_mcmc=rho_h_shared_mcmc,
rho_h_k_mcmc=rho_h_k_mcmc,
pred_id_layer=NULL, pred_id_edge=NULL,
beta_z_layer_mcmc=NULL,
beta_z_edge_mcmc=NULL )
dmn_mcmc <- structure( dmn_mcmc, class="dmn_mcmc" )
return( dmn_mcmc )
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.