#' @title
#' MCMC algorithm for Dynamic Multilayer directed unweighted graphs
#'
#' @description
#' \code{mcmc_d_1_w_0} Implements a Gibbs sampler MCMC algorithm for Dynamic Multilayer directed unweighted graphs.
#'
#' @param y_ijtk Array. Network data, with entry \code{y_ijtk[i,j,t,k]} representing the link from node i to node j at time t in layer k. 0 indicates no link.
#' @param node_all Character vector. Id's of nodes in the network.
#' @param time_all Numeric vector. Timestamps of all relevant epochs for the MCMC, those observed and those for forecast
#' @param layer_all Character vector. Id's of layers in the network.
#' @param x_ijtkp Array. Edge Specific external covariates.
#' @param H_dim Integer. Latent space dimension.
#' @param R_dim Integer. Latent space dimension, for layer specific latent vectors.
#' @param add_eff_link Boolean. Indicates if dynamic additive effects by node should be considered.
#' @param class_dyn String. Specifies prior for latent elements. "GP" for Gaussian Processes,"nGP" for nested Gaussian Processes.
#' @param delta Positive scalar. Hyperparameter controlling for the smoothness in the dynamic of latent coordinates. Larger=smoother.
#' @param n_chains_mcmc Integer. Number of parallel MCMC chains.
#' @param n_iter_mcmc Integer. Number of iterations for the MCMC.
#' @param n_burn Integer. Number of iterations discarded as part of the MCMC warming up period at the beginning of the chain.
#' @param n_thin Integer. Number of iterations discarded for thining the chain (reducing the autocorrelation). We keep 1 of every n_thin iterations.
#' @param keep_y_ijtk_imp Boolean. Indicates wheter the chain with imputed missing links will be saved (FALSE by default)
#' @param rds_file String. Indicates a file (.rds) where the output will be saved.
#' @param log_file String. Indicates a file (.txt) where the log of the process will be saved.
#' @param quiet_mcmc Boolean. Indicates if silent mode is preferes, if \code{FALSE} progress update is displayed.
#' @param parallel_mcmc Boolean. Indicates if the mcmc should be processed in parallel.
#'
#' @import BayesLogit
#' @importFrom MCMCpack procrustes
#'
#' @keywords internal
#'
mcmc_d_1_w_0 <- function( y_ijtk,
node_all, time_all, layer_all,
x_ijtkp=NULL,
H_dim=10, R_dim=10,
add_eff_link=FALSE,
class_dyn=c("GP","nGP")[1],
delta=1,
n_chains_mcmc=1,
n_iter_mcmc=10000, n_burn=floor(n_iter_mcmc/4), n_thin=3,
keep_y_ijtk_imp=FALSE,
rds_file=NULL, log_file=NULL,
quiet_mcmc=FALSE,
parallel_mcmc=FALSE ) {
shrink_lat_space=FALSE
a_1=2; a_2=2.5
procrustes_lat=FALSE
# This function only deal with binary edges (non-weighted)
y_ijtk[y_ijtk>0] <- 1
V_net <- length(node_all)
T_net <- length(time_all)
K_net <- length(layer_all)
# nGP matrices approximated or exact (nGP_mat_approx=F means exact)
nGP_mat_approx = F
# assume no self-edges
diag_y_idx <- matrix(FALSE,V_net,V_net); diag(diag_y_idx)<-TRUE
diag_y_idx <- array(diag_y_idx,dim=dim(y_ijtk))
y_ijtk[diag_y_idx] <- 0
### iterations that will be reported ###
# after burn-in period and thinning
iter_out_mcmc <- seq(from=n_burn+1,to=n_iter_mcmc,by=n_thin)
n_iter_mcmc_out <- length(iter_out_mcmc)
#### Start: MCMC initialization ####
# Edge between actors i and j at time t in layer k
# Augmented Polya-gamma data
w_ijtk <- y_ijtk
w_ijtk[!is.na(w_ijtk)] <- 0
# Baseline parameter #
# at time t for layer k
eta_tk <- matrix( runif(T_net*K_net), T_net, K_net )
eta_tk_mcmc <- array( NA, dim=c(T_net,K_net,n_iter_mcmc_out) )
if( class_dyn=="nGP" ){
alpha_eta_tk <- array( runif(T_net*K_net*3), dim=c(T_net,K_net,3) )
alpha_eta_tk[,,1] <- eta_tk
}
# Latent coordinates #
# shared: hth coordinate of actor v at time t shared across the different layers
# One latent space for each direction #
ab_ith_shared <- list( send=array( runif(V_net*T_net*H_dim,-1,1), dim=c(V_net,T_net,H_dim) ),
receive=array( runif(V_net*T_net*H_dim,-1,1), dim=c(V_net,T_net,H_dim) ) )
if( class_dyn=="nGP" ){
alpha_ab_ith_shared <- list( send=array( runif(V_net*T_net*H_dim,-1,1), dim=c(V_net,T_net,H_dim,3) ),
receive=array( runif(V_net*T_net*H_dim,-1,1), dim=c(V_net,T_net,H_dim,3) ) )
alpha_ab_ith_shared[[1]][,,,1] <- ab_ith_shared[[1]]
alpha_ab_ith_shared[[2]][,,,1] <- ab_ith_shared[[2]]
}
ab_ith_shared_mcmc <- list( send=array(NA,c(V_net,T_net,H_dim,n_iter_mcmc_out)),
receive=array(NA,c(V_net,T_net,H_dim,n_iter_mcmc_out)) )
# by layer: hth coordinate of actor v at time t specific to layer k
ab_ithk <- NULL
ab_ithk_mcmc <- NULL
alpha_ab_ithk <- NULL
if( K_net>1 ){
# One latent space for each direction #
ab_ithk <- list( send=array( runif(V_net*T_net*R_dim*K_net), dim=c(V_net,T_net,R_dim,K_net) ),
receive=array( runif(V_net*T_net*R_dim*K_net), dim=c(V_net,T_net,R_dim,K_net) ) )
ab_ithk_mcmc <- list( send=array(NA,c(V_net,T_net,R_dim,K_net,n_iter_mcmc_out)),
receive=array(NA,c(V_net,T_net,R_dim,K_net,n_iter_mcmc_out)) )
if( class_dyn=="nGP" ){
alpha_ab_ithk <- list( send=array( runif(V_net*T_net*R_dim*K_net*3,-0.1,0.1), dim=c(V_net,T_net,R_dim,K_net,3) ),
receive=array( runif(V_net*T_net*R_dim*K_net*3,-0.1,0.1), dim=c(V_net,T_net,R_dim,K_net,3) ) )
alpha_ab_ithk[[1]][,,,,1] <- ab_ithk[[1]]
alpha_ab_ithk[[2]][,,,,1] <- ab_ithk[[2]]
}
}
### Dynamic additive effects for each node ###
sp_link_it_shared <- NULL
sp_link_it_shared_mcmc <- NULL
alpha_sp_link_it_shared<-NULL
sp_link_itk <- NULL
sp_link_itk_mcmc <- NULL
alpha_sp_link_itk <- NULL
if(add_eff_link){
sp_link_it_shared <- array(0,dim=c(V_net,T_net,2))
sp_link_it_shared_mcmc <- array(NA,dim=c(V_net,T_net,2,n_iter_mcmc_out))
if( class_dyn=="nGP" ){
alpha_sp_link_it_shared <- array( 0, dim=c(V_net,T_net,2,3) )
alpha_sp_link_it_shared[,,,1] <- sp_link_it_shared
}
if(FALSE&(K_net>1)){ # Only consider global additive effects
sp_link_itk <- array(0,dim=c(V_net,T_net,K_net,2))
sp_link_itk_mcmc <- array(NA,dim=c(V_net,T_net,K_net,2,n_iter_mcmc_out))
if( class_dyn=="nGP" ){
alpha_sp_link_itk <- array( 0, dim=c(V_net,T_net,K_net,2,3) )
alpha_sp_link_itk[,,,,1] <- sp_link_itk
}
}
}
# Coefficients for external covariates #
beta_lambda_tp <- NULL
beta_lambda_tp_mcmc <- NULL
if(!is.null(x_ijtkp)) {
P_pred <- dim(x_ijtkp)[5]
beta_lambda_tp <- matrix( runif(T_net*P_pred), nrow=T_net, ncol=P_pred )
beta_lambda_tp_mcmc <- array( NA, dim=c(T_net,P_pred,n_iter_mcmc_out) )
x_ijtkp_mat <- get_x_ijtkp_mat( x_ijtkp=x_ijtkp,
directed=FALSE,
weighted=FALSE )
if( class_dyn=="nGP" ){
alpha_beta_lambda_tp <- array( 0, dim=c(V_net,T_net,K_net,3) )
alpha_beta_lambda_tp[,,,1] <- beta_lambda_tp
}
}
# Linear predictor for the probability of an edge between actors i and j at time t in layer k
gamma_ijtk <- get_linpred_ijtk( baseline_tk=eta_tk,
coord_ith_shared=ab_ith_shared,
coord_ithk=ab_ithk,
add_eff_it_shared=sp_link_it_shared,
add_eff_itk=sp_link_itk,
directed=TRUE )
gamma_ijtk[diag_y_idx] <- NA
# Probability of an edge between actors i and j at time t in layer k
pi_ijtk_mcmc <- array(NA, dim=c(V_net,V_net,T_net,K_net,n_iter_mcmc_out))
## Shrinkage Parameters ##
# shared #
v_shrink_shared <- matrix(1, nrow=H_dim, ncol=1 )
if(shrink_lat_space){
v_shrink_shared[1,1] <- rgamma(n=1,shape=a_1,rate=1); v_shrink_shared[-1,1] <- rgamma(n=H_dim-1,shape=a_2,rate=1)
}
tau_h_shared <- matrix(cumprod(v_shrink_shared), nrow=H_dim, ncol=1 )
if(shrink_lat_space){
tau_h_shared_mcmc <- matrix(NA, nrow=H_dim, ncol=n_iter_mcmc_out )
} else {
tau_h_shared_mcmc <- NULL
}
# duplicate, one latent space for each direction #
v_shrink_shared <- list( send=v_shrink_shared,
receive=v_shrink_shared )
tau_h_shared <- list( send=tau_h_shared,
receive=tau_h_shared )
tau_h_shared_mcmc <- list( send=tau_h_shared_mcmc,
receive=tau_h_shared_mcmc )
# layer-specific #
if( K_net>1 ){
v_shrink_k <- matrix(1, nrow=R_dim, ncol=K_net )
if(shrink_lat_space){
v_shrink_k[1,] <- rgamma(n=K_net,shape=a_1,rate=1); v_shrink_k[-1,] <- rgamma(n=K_net*(R_dim-1),shape=a_2,rate=1)
}
tau_h_k <- matrix(apply(v_shrink_k,2,cumprod), nrow=R_dim, ncol=K_net )
if(shrink_lat_space){
tau_h_k_mcmc <- array( NA, dim=c(R_dim,K_net,n_iter_mcmc_out) )
} else {
tau_h_k_mcmc <- NULL
}
# duplicate, one latent space for each direction #
v_shrink_k <- list( send=v_shrink_k,
receive=v_shrink_k )
tau_h_k <- list( send=tau_h_k,
receive=tau_h_k )
tau_h_k_mcmc <- list( send=tau_h_k_mcmc,
receive=tau_h_k_mcmc )
} else {
v_shrink_k <- NULL
tau_h_k <- NULL
tau_h_k_mcmc <- NULL
}
# Covariance in Latent dynamic elements #
cov_gp_prior <- cov_gp_prior_inv <- NULL
nGP_sigma_net <- nGP_mat <- NULL
if( class_dyn=="GP" ){
# Covariance matrix prior for latent coordinates
cov_gp_prior <- outer( time_all, time_all, FUN=function(x,y,k=delta){ exp(-((x-y)/delta)^2) } )
diag(cov_gp_prior) <- diag(cov_gp_prior) + 1e-3 # numerical stability
cov_gp_prior_inv <- solve(cov_gp_prior)
} else if( class_dyn=="nGP" ){
# Hyperparameters for variance of nGPs
a <- b <- 0.01
nGP_sigma_net <- get_nGP_sigma_net( a=a, b=b,
time_all=time_all,
alpha_baseline_tk=alpha_eta_tk,
alpha_coord_ith_shared=alpha_ab_ith_shared,
alpha_coord_ithk=alpha_ab_ithk,
alpha_add_eff_it_shared=alpha_sp_link_it_shared,
alpha_add_eff_itk=alpha_sp_link_itk,
directed=TRUE )
nGP_mat <- get_nGP_mat_net( nGP_sigma_net,
nGP_mat_approx=nGP_mat_approx,
directed=TRUE )
}
#### End: MCMC initialization ####
# Keep execution time #
mcmc_clock <- Sys.time()
if( !is.null(log_file) ) {
cat("MCMC Starting time:\n",as.character(mcmc_clock),"\n\n",
"---------------------------\n\n\n",
"iter_i , mcmc_acum_minutes , Sys.time \n",
file=log_file, append=T )
}
### Missing links ###
y_ijtk_miss <- FALSE
y_ijtk_miss_idx <- NULL
y_ijtk_imp_mcmc <- NULL
if( any(is.na(y_ijtk)) ) {
y_ijtk_miss <- TRUE
# identifies missing data indices
y_ijtk_miss_idx <- which( is.na(y_ijtk), arr.ind=TRUE )
colnames(y_ijtk_miss_idx) <- c("i","j","t","k")
# Only consider missing data outside the diagonal
y_ijtk_miss_idx <- y_ijtk_miss_idx[y_ijtk_miss_idx[,1]!=y_ijtk_miss_idx[,2],]
# MCMC chain for missing values #
if(keep_y_ijtk_imp){
# CAUTION: may take too much disk space
y_ijtk_imp_mcmc <- matrix( NA, nrow = n_iter_mcmc_out, ncol=nrow(y_ijtk_miss_idx) )
} else {
y_ijtk_imp_mcmc <- NULL
}
}
#### Start: MCMC Sampling ####
if(!quiet_mcmc){ cat("Sampling MCMC ...\n") }
for ( iter_i in 1:n_iter_mcmc) { # iter_i <- 1
#cat(iter_i,",")
### Step 1. Update each augmented data w_ijtk from the full conditional Polya-gamma posterior ###
w_ijtk <- sample_pg_w_ijtk_link( w_ijtk=w_ijtk,
gamma_ijtk=gamma_ijtk,
directed=TRUE )
### Step 2. Sample eta_tk from its conditional N-variate Gaussian posterior ###
out_aux <- sample_baseline_tk_link( eta_tk=eta_tk,
y_ijtk=y_ijtk, w_ijtk=w_ijtk, gamma_ijtk=gamma_ijtk,
class_dyn=class_dyn,
eta_t_cov_prior_inv=cov_gp_prior_inv,
nGP_mat=nGP_mat$baseline_k,
alpha_eta_tk=alpha_eta_tk,
directed=TRUE )
eta_tk <- out_aux$eta_tk
gamma_ijtk <- out_aux$gamma_ijtk # This updates gamma_ijtk except for the diagonal
eta_tk <- out_aux$eta_tk
gamma_ijtk <- out_aux$gamma_ijtk # This updates ONLY the lower triangular matrices in gamma_ijtk
gamma_ijtk[diag_y_idx] <- NA
if( class_dyn=="nGP" ){
alpha_eta_tk <- out_aux$alpha_eta_tk
}
rm(out_aux)
# # Checking consistency of linear predictor gamma_ijtk
# gamma_ijtk_old <- gamma_ijtk
# gamma_ijtk_old[diag_y_idx] <- NA
# gamma_ijtk <- get_linpred_ijtk( baseline_tk=eta_tk,
# add_eff_it_shared=sp_link_it_shared,
# add_eff_itk=sp_link_itk,
# coord_ith_shared=ab_ith_shared,
# coord_ithk=ab_ithk,
# directed=TRUE )
# gamma_ijtk[diag_y_idx] <- NA
# all.equal(gamma_ijtk,gamma_ijtk_old)
# MCMC chain #
if(is.element(iter_i,iter_out_mcmc)){
eta_tk_mcmc[,,match(iter_i,iter_out_mcmc)] <- eta_tk
}
### Step 3. For each unit, block-sample the set of time-varying latent coordinates x_ith ###
### SHARED Latent Coordinates ###
out_aux <- sample_coord_ith_shared_link( ab_ith=ab_ith_shared,
y_ijtk=y_ijtk, w_ijtk=w_ijtk, gamma_ijtk=gamma_ijtk,
class_dyn=class_dyn,
ab_t_sigma_prior_inv=cov_gp_prior_inv,
tau_h=tau_h_shared,
alpha_ab_ith=alpha_ab_ith_shared,
nGP_mat=nGP_mat$coord_i,
directed=TRUE )
ab_ith_shared <- out_aux$ab_ith
gamma_ijtk <- out_aux$gamma_ijtk
# gamma_ijtk[diag_y_idx] <- NA
if( class_dyn=="nGP" ){
alpha_ab_ith_shared <- out_aux$alpha_ab_ith
}
rm(out_aux)
# MCMC chain #
if(is.element(iter_i,iter_out_mcmc)){
ab_ith_shared_mcmc[[1]][,,,match(iter_i,iter_out_mcmc)] <- ab_ith_shared[[1]]
ab_ith_shared_mcmc[[2]][,,,match(iter_i,iter_out_mcmc)] <- ab_ith_shared[[2]]
}
### LAYER SPECIFIC Latent Coordinates ###
if( K_net>1 ) {
### Step 3A. For each unit, block-sample the EDGE SPECIFIC set of time-varying latent coordinates ab_ithk ###
out_aux <- sample_coord_ithk_link( ab_ithk=ab_ithk,
y_ijtk=y_ijtk, w_ijtk=w_ijtk, gamma_ijtk=gamma_ijtk,
class_dyn=class_dyn,
ab_t_sigma_prior_inv=cov_gp_prior_inv,
tau_h=tau_h_k,
alpha_ab_ithk=alpha_ab_ithk,
nGP_mat=nGP_mat$coord_ik,
directed=TRUE )
ab_ithk <- out_aux$ab_ithk
gamma_ijtk <- out_aux$gamma_ijtk
# gamma_ijtk[diag_y_idx] <- NA
if( class_dyn=="nGP" ){
alpha_ab_ithk <- out_aux$alpha_ab_ithk
}
# MCMC chain for ab_ithk #
if(is.element(iter_i,iter_out_mcmc)){
ab_ithk_mcmc[[1]][,,,,match(iter_i,iter_out_mcmc)] <- ab_ithk[[1]]
ab_ithk_mcmc[[2]][,,,,match(iter_i,iter_out_mcmc)] <- ab_ithk[[2]]
}
}
### Step 4 Sample global additive effects ###
if(add_eff_link){
out_aux <- sample_add_eff_it_shared_link( sp_it_shared=sp_link_it_shared,
sp_t_cov_prior_inv=cov_gp_prior_inv,
y_ijtk=y_ijtk, w_ijtk=w_ijtk, gamma_ijtk=gamma_ijtk,
directed=TRUE )
sp_link_it_shared <- out_aux$sp_it_shared
gamma_ijtk <- out_aux$gamma_ijtk
# MCMC chain #
if(is.element(iter_i,iter_out_mcmc)){
sp_link_it_shared_mcmc[,,,match(iter_i,iter_out_mcmc)] <- sp_link_it_shared
}
### Step L2_add_eff_itk. Sample layer-specific additive effects ###
if(FALSE&!is.null(sp_link_itk)){ # Only consider global additive effects
out_aux <- sample_add_eff_itk_link( sp_itk=sp_link_itk,
sp_t_cov_prior_inv=cov_gp_prior_inv,
y_ijtk=y_ijtk, w_ijtk=w_ijtk, gamma_ijtk=gamma_ijtk,
directed=TRUE )
sp_link_itk <- out_aux$sp_itk
gamma_ijtk <- out_aux$gamma_ijtk
# MCMC chain #
if(is.element(iter_i,iter_out_mcmc)){
sp_link_itk_mcmc[,,,,match(iter_i,iter_out_mcmc)] <- sp_link_itk
}
}
}
### Step 6A. Compute Edge probabilities ###
if(is.element(iter_i,iter_out_mcmc)){
gamma_ijtk[diag_y_idx] <- NA
pi_ijtk_mcmc[,,,,match(iter_i,iter_out_mcmc)] <- plogis(gamma_ijtk)
}
### Step 6B. Impute missing links ###
if( keep_y_ijtk_imp & y_ijtk_miss ) { # requires too much disk memory
# MCMC chain #
if(is.element(iter_i,iter_out_mcmc)){
Y_imp <- rbinom( n=nrow(y_ijtk_miss_idx), size=1, prob=plogis(gamma_ijtk[y_ijtk_miss_idx]) )
y_ijtk_imp_mcmc[match(iter_i,iter_out_mcmc),] <- Y_imp
}
}
### Step 7. Sample variance terms ###
if( class_dyn=="GP" ){
# Sample the global shrinkage hyperparameters from conditional gamma distributions #
if(shrink_lat_space){
for( dir_i in 1:2 ) {
v_shrink_shared[[dir_i]] <- sample_v_shrink_DynMultiNet_bin( v_shrink_shared[[dir_i]],
a_1, a_2,
ab_ith_shared[[dir_i]],
cov_gp_prior_inv )
tau_h_shared[[dir_i]] <- matrix(cumprod(v_shrink_shared[[dir_i]]), nrow=H_dim, ncol=1 )
if(is.element(iter_i,iter_out_mcmc)){
tau_h_shared_mcmc[[dir_i]][,match(iter_i,iter_out_mcmc)] <- tau_h_shared[[dir_i]]
}
}
if(K_net>1){
for( dir_i in 1:2 ) {
for(k in 1:K_net) {
v_shrink_k[[dir_i]][,k] <- sample_v_shrink_DynMultiNet_bin( v_shrink_k[[dir_i]][,k,drop=F],
a_1, a_2,
ab_ithk[[dir_i]][,,,k],
cov_gp_prior_inv )
}
tau_h_k[[dir_i]] <- matrix(apply(v_shrink_k[[dir_i]],2,cumprod), nrow=R_dim, ncol=K_net )
if(is.element(iter_i,iter_out_mcmc)){
tau_h_k_mcmc[[dir_i]][,,match(iter_i,iter_out_mcmc)] <- tau_h_k[[dir_i]]
}
}
}
}
} else if( class_dyn=="nGP" ){
nGP_sigma_net <- get_nGP_sigma_net( a=a, b=b,
time_all=time_all,
alpha_baseline_tk=alpha_eta_tk,
alpha_coord_ith_shared=alpha_ab_ith_shared,
alpha_coord_ithk=alpha_ab_ithk,
alpha_add_eff_it_shared=alpha_sp_link_it_shared,
alpha_add_eff_itk=alpha_sp_link_itk,
directed=TRUE )
nGP_mat <- get_nGP_mat_net( nGP_sigma_net,
nGP_mat_approx=nGP_mat_approx,
directed=TRUE )
}
# display MCMC progress #
if( is.element(iter_i, floor(n_iter_mcmc*seq(0,1,0.05)[-1]) ) ) {
if(!quiet_mcmc){
cat(round(100*iter_i/n_iter_mcmc),"% ",sep="")
}
if( !is.null(log_file) ) {
cat(iter_i," , ", as.numeric(difftime(Sys.time(),mcmc_clock,units="mins"))," , ", as.character(Sys.time()),"\n",
file=log_file,append=TRUE )
}
}
# save MCMC progress #
if( is.element(iter_i, floor(n_iter_mcmc*seq(0,1,0.25)[-1]) ) & iter_i>min(iter_out_mcmc,na.rm=T) ) {
if(!is.null(rds_file)){
dmn_mcmc <- list( y_ijtk=y_ijtk,
directed=TRUE,
weighted=FALSE,
n_chains_mcmc=n_chains_mcmc,
n_iter_mcmc=n_iter_mcmc, n_burn=n_burn, n_thin=n_thin,
H_dim=H_dim, R_dim=R_dim,
delta=delta,
shrink_lat_space=shrink_lat_space,
a_1=a_1, a_2=a_2,
procrustes_lat=procrustes_lat,
node_all=node_all, time_all=time_all, layer_all=layer_all,
# For link probabilities #
pi_ijtk_mcmc=pi_ijtk_mcmc,
eta_tk_mcmc=eta_tk_mcmc,
sp_link_it_shared_mcmc=sp_link_it_shared_mcmc,
sp_link_itk_mcmc=sp_link_itk_mcmc,
ab_ith_shared_mcmc=ab_ith_shared_mcmc,
ab_ithk_mcmc=ab_ithk_mcmc,
tau_h_shared_mcmc=tau_h_shared_mcmc,
tau_h_k_mcmc=tau_h_k_mcmc,
# imputed links
y_ijtk_miss_idx=y_ijtk_miss_idx,
y_ijtk_imp_mcmc=y_ijtk_imp_mcmc,
# For link weights #
mu_ijtk_mcmc = NULL,
sp_weight_it_shared_mcmc=NULL,
sp_weight_itk_mcmc=NULL,
sigma_k_mcmc = NULL,
theta_tk_mcmc = NULL,
uv_ith_shared_mcmc = NULL,
uv_ithk_mcmc = NULL,
rho_h_shared_mcmc = NULL,
rho_h_k_mcmc = NULL
)
dmn_mcmc <- structure( dmn_mcmc, class="dmn_mcmc" )
saveRDS(dmn_mcmc,file=rds_file)
}
}
}
if(!quiet_mcmc){cat("\nMCMC finished!\n")}
#### End: MCMC Sampling ####
if( !is.null(log_file) ) {
cat("\n\n---------------------------\n\n",
"Finishing time:\n",as.character(Sys.time()),"\n\n",
file=log_file, append=TRUE)
}
dmn_mcmc <- list( y_ijtk=y_ijtk,
directed=TRUE,
weighted=FALSE,
n_chains_mcmc=n_chains_mcmc,
n_iter_mcmc=n_iter_mcmc, n_burn=n_burn, n_thin=n_thin,
H_dim=H_dim, R_dim=R_dim,
delta=delta,
shrink_lat_space=shrink_lat_space,
a_1=a_1, a_2=a_2,
procrustes_lat=procrustes_lat,
node_all=node_all, time_all=time_all, layer_all=layer_all,
# For link probabilities #
pi_ijtk_mcmc=pi_ijtk_mcmc,
eta_tk_mcmc=eta_tk_mcmc,
sp_link_it_shared_mcmc=sp_link_it_shared_mcmc,
sp_link_itk_mcmc=sp_link_itk_mcmc,
ab_ith_shared_mcmc=ab_ith_shared_mcmc,
ab_ithk_mcmc=ab_ithk_mcmc,
tau_h_shared_mcmc=tau_h_shared_mcmc,
tau_h_k_mcmc=tau_h_k_mcmc,
# imputed links
y_ijtk_miss_idx=y_ijtk_miss_idx,
y_ijtk_imp_mcmc=y_ijtk_imp_mcmc,
# For link weights #
mu_ijtk_mcmc = NULL,
sp_weight_it_shared_mcmc=NULL,
sp_weight_itk_mcmc=NULL,
sigma_k_mcmc = NULL,
theta_tk_mcmc = NULL,
uv_ith_shared_mcmc = NULL,
uv_ithk_mcmc = NULL,
rho_h_shared_mcmc = NULL,
rho_h_k_mcmc = NULL )
dmn_mcmc <- structure( dmn_mcmc, class="dmn_mcmc" )
return( dmn_mcmc )
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.