AdaSubBoost: AdaSubBoost and RSubBoost

Description Usage Arguments Examples

Description

This function implements the adaptive subspace boosting algorithm (AdaSubBoost) as well as random subspace boosting (RSubBoost).

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
AdaSubBoost(
  data,
  Iter,
  K = 100,
  q = 10,
  size.fixed = NULL,
  tau = 0.01,
  const = 0,
  savings = 1,
  U_C = 25,
  family = "normal",
  conservative = TRUE,
  update = "S",
  adaptive = TRUE,
  s_max = 20,
  nstop = Iter,
  automatic.stopping = TRUE,
  marginal.screening = FALSE,
  plotting = FALSE
)

Arguments

data

should be a list with data$x as design matrix and data$y as response

Iter

iterations

K

parameter K - default is set to 100

q

parameter q - default is set to 10

size.fixed

default is set to NULL

tau

parameter tau - default is set to 0.01

const

parameter const - default is set to 0

savings

default is set to 1

U_C

parameter is set to 25

family

default is set to "normal"

conservative

default is set to TRUE

update

default is set to "S"

adaptive

default is set to TRUE (AdaSubBoost), for RSubBoost specify as FALSE

s_max

default is set to 20

nstop

default is set to Iter

automatic.stopping

default is set to TRUE

marginal.screening

default is set to FALSE

plotting

default is set to FALSE

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
### high-dimensional example (AdaSubBoost and RSubBoost)
# load "hdi" package for riboflavin data
require(hdi)

data(riboflavin)
n <- length(riboflavin$y)
p <- dim(riboflavin$x)[2]

# input data format:
# list with design matrix in data$x and response vector in data$y
data <- list()
data$x <- as.matrix(riboflavin$x)
data$y <- as.vector(riboflavin$y)

# constant (gamma) in EBIC
const <- 1

# expected search size
q <- 20

# adaptation parameter
K <- p/q

# maximum size for initial screening
s_max <- 15

# learning rate
tau <- 0.01

# (maximum) number of iterations
Iter <- 1000

# AdaSubBoost
set.seed(123)
output <- AdaSubBoost(data = data, Iter = Iter, const = const,
                      K = K, q = q, tau = tau, s_max = s_max)
output$selected # selected variables by AdaSubBoost
output$coef[names(output$selected)] # estimated non-zero coefficients by AdaSubBoost


# RSubBoost (no adaptation of sampling probabilites for base-learners)
set.seed(123)
outputRSub <- AdaSubBoost(data = data, Iter = Iter, const = const,
                          K = K, q = q, tau = tau, s_max = s_max,
                          adaptive = FALSE)
outputRSub$selected  # selected variables by RSubBoost
outputRSub$coef[names(outputRSub$selected)]

chstaerk/SubBoost documentation built on Dec. 19, 2021, 4:06 p.m.