Description Usage Arguments Examples
This function implements the subspace boosting algorithm (SubBoost).
1 2 3 4 5 6 7 8 9 10 11 12 |
data |
should be a list with data$x as design matrix and data$y as response |
Iter |
iterations |
size.fixed |
default is set to NULL |
tau |
parameter tau - default is set to 0.01 |
const |
parameter const - default is set to 0 |
savings |
default is set to 1 |
family |
default is set to "normal" |
s_max |
default is set to 20 |
automatic.stopping |
default is set to TRUE |
plotting |
default is set to FALSE |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | require(TH.data)
# input data format:
# list with design matrix in data$x and response vector in data$y
data <- list()
data$x <- as.matrix(bodyfat[,-2])
data$y <- as.vector(bodyfat$DEXfat)
# constant (gamma) in EBIC
const <- 0 # classical BIC
# learning rate
tau <- 0.01
# (maximum) number of iterations
Iter <- 1000
# SubBoost (only applicable for low-dimensional settings, e.g. p<=20)
outputSub <- SubBoost(data = data, Iter = Iter, const = const, tau = tau)
outputSub$selected # selected variables by SubBoost
outputSub$coef # estimated coefficient vector by SubBoost
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.