SubBoost: SubBoost

Description Usage Arguments Examples

Description

This function implements the subspace boosting algorithm (SubBoost).

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
SubBoost(
  data,
  Iter,
  size.fixed = NULL,
  tau = 0.01,
  const = 0,
  savings = 1,
  family = "normal",
  s_max = 20,
  automatic.stopping = TRUE,
  plotting = FALSE
)

Arguments

data

should be a list with data$x as design matrix and data$y as response

Iter

iterations

size.fixed

default is set to NULL

tau

parameter tau - default is set to 0.01

const

parameter const - default is set to 0

savings

default is set to 1

family

default is set to "normal"

s_max

default is set to 20

automatic.stopping

default is set to TRUE

plotting

default is set to FALSE

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
require(TH.data)

# input data format:
# list with design matrix in data$x and response vector in data$y
data <- list()
data$x <- as.matrix(bodyfat[,-2])
data$y <- as.vector(bodyfat$DEXfat)

# constant (gamma) in EBIC
const <- 0 # classical BIC

# learning rate
tau <- 0.01

# (maximum) number of iterations
Iter <- 1000

# SubBoost (only applicable for low-dimensional settings, e.g. p<=20)
outputSub <- SubBoost(data = data, Iter = Iter, const = const, tau = tau)
outputSub$selected # selected variables by SubBoost
outputSub$coef # estimated coefficient vector by SubBoost

chstaerk/SubBoost documentation built on Dec. 19, 2021, 4:06 p.m.