rm(list=ls())
library(survival)
library(survminer)
library(dplyr)
library(OIsurv) # Aumatically loads KMsurv
library(ranger)
library(ggplot2)
library(KMsurv)
library(igraph)
library(RColorBrewer)
library(circlize)
library(ComplexHeatmap)
## go to the working directory
setwd("athena/data/OAC/")
source("functions.R")
######################################################
## Groups
######################################################
load("~/rosalind_lustre/mourikisa/data/OAC/Combined_ICGC_cohort_129_66_71/sysSVM/OAC/patient_stratification_onlyTop10.Rdata")
d = d %>% select(sample, group_pathway_numbers) %>% unique
######################################################
## Get the clinical data
######################################################
clinic = read.table("~/rosalind_lustre/mourikisa/data/OAC/Clinical_data/261_OAC_clinical.txt", header = T, sep="\t")
## Unmapping the values (Lawrence gave me the format thathe uploads to the ICGC web site)
clinic = clinic %>% mutate(specimen_donor_treatment_type=ifelse(specimen_donor_treatment_type==1, "no_treatment",
ifelse(specimen_donor_treatment_type==2, "chemotherapy",
ifelse(specimen_donor_treatment_type==3, "radiation_therapy",
ifelse(specimen_donor_treatment_type==4, "chemo plus radiation therapy",
ifelse(specimen_donor_treatment_type==5, "immunotherapy",
ifelse(specimen_donor_treatment_type==6, "chemo plus immunotherapy",
ifelse(specimen_donor_treatment_type==7, "surgery",
ifelse(specimen_donor_treatment_type==8, "other_therapy",
ifelse(specimen_donor_treatment_type==9, "bone marrow transplant",
ifelse(specimen_donor_treatment_type==10, "stem cell transplant",
ifelse(specimen_donor_treatment_type==11, "monoclonal antibodies", NA))))))))))))
clinic = clinic %>% mutate(donor_sex=ifelse(donor_sex==1, "male",
ifelse(donor_sex==2, "female", NA)))
clinic = clinic %>% mutate(tobacco_smoking_history_indicator=ifelse(tobacco_smoking_history_indicator==1, "never-smoker",
ifelse(tobacco_smoking_history_indicator==2, "smoker",
ifelse(tobacco_smoking_history_indicator%in%c(3:5), "non-smoker", NA))))
clinic = clinic %>% mutate(donor_vital_status=ifelse(donor_vital_status==1, "alive",
ifelse(donor_vital_status==2, "deceased", NA)))
clinic = clinic %>% select(sample, specimen_donor_treatment_type, tumour_grade,
tumour_stage_revised, donor_sex, donor_age_at_diagnosis, donor_survival_time,
donor_vital_status,
tobacco_smoking_history_indicator, siewert_type)
clinic[clinic== -888] = NA
######################################################
## Comparisons
######################################################
## get group number in the table
s = clinic %>% left_join(d) %>% select(donor_survival_time, donor_vital_status, group_pathway_numbers) %>%
mutate(status=ifelse(donor_vital_status=="alive", 0, 1)) %>% rename(group=group_pathway_numbers)
## Survival analysis
s = s %>% subset(donor_survival_time!="NA") %>% mutate(donor_survival_time=as.numeric(donor_survival_time))
ss = s %>% mutate(group=ifelse(group=="6", "6", "rest"))
## One for all groups together
my.surv <- Surv(time=as.numeric(ss$donor_survival_time), event = ss$status, type="right")
my.fit = survfit(my.surv~group, data = ss)
pdf("~/Desktop/survival_6_vs_rest.pdf")
ggsurvplot(my.fit,
pval = TRUE, conf.int = FALSE,
risk.table = TRUE, # Add risk table
risk.table.col = "strata", # Change risk table color by groups
linetype = "strata", # Change line type by groups
ggtheme = theme_bw(), # Change ggplot2 theme
palette = c("green", "blue", "red", "black", "cyan", "orange"))
#plot(my.fit)
dev.off()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.