source("~/Lavoro/pancancer_model_training/config.R")
load("Rdata/EAC.15_02_16.euristics.Rdata")
cols=c('Cancer_type', 'Sample','Entrez','no_NSI_muts', 'no_TRUNC_muts', 'no_NTDam_muts', 'no_NTDamFunction_muts' ,
'no_NTDamCons_muts','no_NTDamSC_muts','no_GOF_muts' ,'Copy_number' ,'TPM' ,'vogel' ,'Genic' ,'inCDD' , 'alldomains' ,
'private_domains','commondomains' ,'memberofcomplex' ,'High' ,'Low' ,'Medium' , 'NotExpressed' , 'Length_fullrefseq',
'WGD' , 'degree' , 'betweenness','hub' , 'central' , 'CNVGain', 'CNVLoss', 'ExpT_ME', 'ExpT_HE' ,
'ExpT_LE' , 'ExpT_NE' ,'ExpT_NET','old' ,'young' ,'luca' ,'eukaryotes', 'metazoans' ,'vertebrates' ,'opisthokonts',
'mammals' ,'selective' ,'always_expressed','middle' , 'one_tissue' , 'never_expressed' , 'tot_tissues' )
eac.table$Cancer_type='OAC'
colnames(eac.table)[1] = 'Sample'
colnames(eac.table)[3] = 'Entrez'
colnames(eac.table) = gsub("\\.","_", colnames(eac.table))
cols[which(cols%nin%colnames(eac.table))]
df = eac.table[,cols]
df$TPM[is.na(df$TPM)] = -1
write.table(df, file="/Volumes/ceredam/novel_driver_prediction/OAC.tsv", col.names=F, row.names=F, quote=F, sep="\t")
# load data local infile '/home/ceredam/novel_driver_prediction/OAC.tsv' into table OAC;
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.