#' Arrange rows of a data frame
#'
#' Re-arranges rows of a data frame by the variable of your choice, ascending or descending.
#'
#' @details
#'
#' First argument: a data frame.
#'
#' Next arguments: the variable that you want to arrange by. If you specify
#' a second variable, it will be used for breaking ties in the first variable.
#'
#' `data %>% arrange(...)`
#'
#' `arrange(data, ...)`
#'
#' @usage
#'
#' @examples
#' # Arrange by x, ascending:
#'
#' tibble(
#' x = c(6, 7, 3),
#' y = c(5, 9, 0),
#' z = c(8, 2, 1)
#' ) %>%
#' arrange(x)
#'
#' # A tibble: 3 x 3
#' #> x y z
#' <dbl> <dbl> <dbl>
#' #> 3 0 1
#' #> 6 5 8
#' #> 7 9 2
#'
#' -----------------------------------
#'
#' # Arrange by x, descending:
#'
#' tibble(
#' x = c(6, 7, 3),
#' y = c(5, 9, 0),
#' z = c(8, 2, 1)
#' ) %>%
#' arrange(desc(x))
#'
#' #> # A tibble: 3 x 3
#' #> x y z
#' <dbl> <dbl> <dbl>
#' #> 7 9 2
#' #> 6 5 8
#' #> 3 0 1
#'
#' -----------------------------------
#'
#' library(gapminder)
#'
#' gapminder %>%
#' arrange(desc(gdpPercap))
#'
#' #> # A tibble: 1,704 x 6
#' #> country continent year lifeExp pop gdpPercap
#' <fct> <fct> <int> <dbl> <int> <dbl>
#' #> 1 Kuwait Asia 1957 58.0 212846 113523.
#' #> 2 Kuwait Asia 1972 67.7 841934 109348.
#' #> 3 Kuwait Asia 1952 55.6 160000 108382.
#'
#' @export
#' @seealso
#'
#' Other dplyr verbs: [filter()], [group_by()], [summarize()], [mutate()], [select()]
#'
arrange <- function(){}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.