#' Filter rows of a data frame
#'
#' Filter out the rows of a data frame that don't meet your conditions.
#'
#' @details
#' First argument: a data frame.
#'
#' Next arguments: conditions on variables using logical operators
#' like `>`, `<`, `==`, `!=`, and `%in%`.
#'
#' `filter(data, ...)`
#'
#' `data %>% filter(...)`
#'
#' @usage
#'
#' @examples
#' # Filter with a '>' condition:
#'
#' tibble(
#' x = c(6, 7, 3),
#' y = c(5, 9, 0),
#' z = c(8, 2, 1)
#' ) %>%
#' filter(x > 5)
#'
#' #> # A tibble: 2 x 3
#' #> x y z
#' <dbl> <dbl> <dbl>
#' #> 6 5 8
#' #> 7 9 2
#'
#' -----------------------------------
#'
#' # Filter with a '==' condition:
#'
#' tibble(
#' x = c(6, 7, 3),
#' y = c(5, 9, 0),
#' z = c(8, 2, 1)
#' ) %>%
#' filter(x == 3)
#'
#' #> # A tibble: 1 x 3
#' #> x y z
#' <dbl> <dbl> <dbl>
#' #> 3 0 1
#'
#' -----------------------------------
#'
#' library(gapminder)
#'
#' gapminder %>%
#' filter(country %in% c("Mexico", "Guatemala"),
#' year == 1997)
#'
#' #> A tibble: 2 x 6
#' #> country continent year lifeExp pop gdpPercap
#' <fct> <fct> <int> <dbl> <int> <dbl>
#' #> 1 Guatemala Americas 1997 66.3 9803875 4684.
#' #> 2 Mexico Americas 1997 73.7 95895146 9767.
#'
#' @export
#' @seealso
#'
#' Other dplyr verbs: [select()], [group_by()], [summarize()], [mutate()], [arrange()]
#'
filter <- function(){}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.