#' Mutate a data frame by adding variables
#'
#' Adds new variables that may be combinations or transformations of existing variables.
#'
#' @details
#' First argument: a data frame.
#'
#' Next arguments: the new variables you'd like to add.
#'
#' `mutate(data, ...)`
#'
#' `data %>% mutate(...)`
#'
#' @usage
#'
#' @examples
#' # Define a new variable that's a
#' # combination of other variables:
#'
#' tibble(x = c(1, 1, 2),
#' y = c(1, 3, 0)) %>%
#' mutate(z = 2*x + y)
#'
#' #> # A tibble: 4 x 3
#' #> x y z
#' <dbl> <dbl> <dbl>
#' #> 1 1 3
#' #> 1 3 5
#' #> 2 0 4
#'
#' -----------------------------------
#'
#' library(gapminder)
#'
#' gapminder %>%
#' mutate(gdp_total = gdpPercap*pop)
#'
#' #> # A tibble: 1,704 x 5
#' #> country year pop gdpPercap gdp_total
#' <fct> <int> <int> <dbl> <dbl>
#' #> 1 Afghanistan 1952 8425333 779. 6567086330.
#' #> 2 Afghanistan 1957 9240934 821. 7585448670.
#' #> 3 Afghanistan 1962 10267083 853. 8758855797.
#'
#' @export
#'
#' @seealso
#' Other dplyr verbs: [filter()], [group_by()], [arrange()], [summarize()], [select()]
#'
mutate <- function(){}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.