#' Select columns of a data frame
#'
#' Select columns of a data frame by name, and rename
#' or rearrange if needed.
#'
#' @details
#' First argument: a data frame.
#'
#' Next argument: name the variables you want to keep in the order
#' you want them to be in. Alternatively, use `-` to name the
#' variables you want to drop.
#'
#' `data %>% select(...)`
#'
#' `select(data, ...)`
#'
#' @usage
#'
#' @examples
#' # Select and rearrange 2 variables:
#'
#' tibble(
#' x = c(1, 2, 3),
#' y = c(4, 5, 6),
#' z = c(7, 8, 9)
#' ) %>%
#' select(z, x)
#'
#' #> # A tibble: 3 x 2
#' #> z x
#' <dbl> <dbl>
#' #> 7 1
#' #> 8 2
#' #> 9 3
#'
#' -----------------------------------
#'
#' # Drop a variable using '-':
#'
#' tibble(
#' x = c(1, 2, 3),
#' y = c(4, 5, 6),
#' z = c(7, 8, 9)
#' ) %>%
#' select(-z)
#'
#' #> # A tibble: 3 x 2
#' #> x y
#' <dbl> <dbl>
#' #> 1 4
#' #> 2 5
#' #> 3 6
#'
#' -----------------------------------
#'
#' # Rename a variable:
#'
#' tibble(
#' x = c(1, 2, 3),
#' y = c(4, 5, 6),
#' z = c(7, 8, 9)
#' ) %>%
#' select(low_numbers = x, y)
#'
#' #> # A tibble: 3 x 2
#' #> low_numbers y
#' <dbl> <dbl>
#' #> 1 4
#' #> 2 5
#' #> 3 6
#'
#' -----------------------------------
#'
#' library(gapminder)
#'
#' gapminder %>%
#' select(country, year, gdpPercap)
#'
#' #> # A tibble: 1,704 x 3
#' #> country year gdpPercap
#' <fct> <int> <dbl>
#' #> 1 Afghanistan 1952 779.
#' #> 2 Afghanistan 1957 821.
#' #> 3 Afghanistan 1962 853.
#'
#' @export
#' @seealso
#'
#' Other dplyr verbs: [filter()], [group_by()], [summarize()], [mutate()], [arrange()]
#'
select <- function(){}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.