| top_markers | R Documentation | 
Identify the genes most specifically expressed in groups of cells
top_markers(
  cds,
  group_cells_by = "cluster",
  genes_to_test_per_group = 25,
  reduction_method = "UMAP",
  marker_sig_test = TRUE,
  reference_cells = NULL,
  speedglm.maxiter = 25,
  cores = 1,
  verbose = FALSE
)
cds | 
 A cell_data_set object to calculate top markers for.  | 
group_cells_by | 
 String indicating what to group cells by for comparison. Default is "cluster".  | 
genes_to_test_per_group | 
 Numeric, how many genes of the top ranked specific genes by Jenson-Shannon to do the more expensive regression test on.  | 
reduction_method | 
 String indicating the method used for dimensionality reduction. Currently only "UMAP" is supported.  | 
marker_sig_test | 
 A flag indicating whether to assess the discriminative power of each marker through logistic regression. Can be slow, consider disabling to speed up top_markers().  | 
reference_cells | 
 If provided, top_markers will perform the marker significance test against a "reference set" of cells. Must be either a list of cell ids from colnames(cds), or a positive integer. If the latter, top_markers() will randomly select the specified number of reference cells. Accelerates the marker significance test at some cost in sensitivity.  | 
speedglm.maxiter | 
 Maximum number of iterations allowed for fitting GLM models when testing markers for cell group.  | 
cores | 
 Number of cores to use.  | 
verbose | 
 Whether to print verbose progress output.  | 
a data.frame where the rows are genes and the columns are
gene_id vector of gene names
gene_short_name vector of gene short names
cell_group character vector of the cell group to which the cell belongs
marker_score numeric vector of marker scores as the fraction expressing scaled by the specificity. The value ranges from 0 to 1.
mean_expression numeric vector of mean normalized expression of the gene in the cell group
fraction_expressing numeric vector of fraction of cells expressing the gene within the cell group
specificity numeric vector of a measure of how specific the gene's expression is to the cell group based on the Jensen-Shannon divergence. The value ranges from 0 to 1.
pseudo_R2 numeric vector of pseudo R-squared values, a measure of how well the gene expression model fits the categorical data relative to the null model. The value ranges from 0 to 1.
marker_test_p_value numeric vector of likelihood ratio p-values
marker_test_q_value numeric vector of likelihood ratio q-values
  
    library(dplyr)
    cell_metadata <- readRDS(system.file('extdata',
                                         'worm_embryo/worm_embryo_coldata.rds',
                                         package='monocle3'))
    gene_metadata <- readRDS(system.file('extdata',
                                         'worm_embryo/worm_embryo_rowdata.rds',
                                         package='monocle3'))
    expression_matrix <- readRDS(system.file('extdata',
                                             'worm_embryo/worm_embryo_expression_matrix.rds',
                                             package='monocle3'))
    cds <- new_cell_data_set(expression_data=expression_matrix,
                             cell_metadata=cell_metadata,
                             gene_metadata=gene_metadata)
    cds <- preprocess_cds(cds)
    cds <- reduce_dimension(cds)
    cds <- cluster_cells(cds)
    marker_test_res <- top_markers(cds, group_cells_by="partition", reference_cells=1000)
    top_specific_markers <- marker_test_res %>%
                             filter(fraction_expressing >= 0.10) %>%
                             group_by(cell_group) %>%
                             top_n(1, pseudo_R2)
    top_specific_marker_ids <- unique(top_specific_markers %>% pull(gene_id))
  
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.