### This represents the createData functions on February 18 2023
#' Create artificial fixation data (February)
#'
#' Data to create "empirical" data centered around four parameter logistic
#'
#' @param n number of subjects (it actually creates two groups of 25 each for bootstrap)
#' @param trials number of trials for binomial method
#' @param pars starting parameters for groups, gotten empirically. Probably will never change this value
#' @param paired is this paired data?
#' @param pairMag how much variability between paired subjects
#' @param ar1 do i create ar1 data instead of binomial
#' @param manymeans do i do this the right way or the wrong way
#' @param pairedType 1 indicates using exact same pars, 2 indicates adding noise with mean 0
#'
#' @description Create data for validating different situations in competing bdots implementations
#' ar = 0.8 and sd in ar noise is 0.025
#' @import mvtnorm
#' @export
createData_feb <- function(n = 25, trials = 100, pars = EMPIRICAL_START_PARS,
paired = FALSE, pairMag = 0.05, ar1 = FALSE,
manymeans = TRUE, pairedType = 1) {
time <- seq(0, 1600, by = 4)
if (!manymeans) {
res <- singleMeans_feb(n, trials, pars, paired, ar1, time)
return(res)
}
## If AR1 we can implement trials by impacting noise as such var = p(1-p)) / n
# when n = 10 that gives us sig = 0.025 as used in trials
if (ar1) {
sigv <- (0.5)*(1-0.5) / sqrt(trials)
rhop <- ifelse(paired, 0, 0.8)
}
newpars <- do.call(rmvnorm, as.list(c(n, pars)))
newpars[,1] <- abs(newpars[,1]) # need base > 0
newpars[,2] <- pmin(newpars[,2], 1) # need peak < 1
spars <- split(newpars, row(newpars))
dts1 <- lapply(seq_len(n), function(x) {
pp <- spars[[x]]
dt <- data.table(id = x,
time = time,
group = "A",
true = eyetrackSim:::logistic_f(pp, time))
if (ar1) {
dt[, fixations := addARerror(val = true, sig = sigv)]
} else {
dt[, fixations := mean(rbinom(trials, 1, true)), by = time]
}
})
dts1 <- rbindlist(dts1)
## Then we make our parameters for group 2
if (!paired) {
## Basically just repeat above, exact same distribution
newpars2 <- do.call(rmvnorm, as.list(c(n, pars)))
newpars2[,1] <- abs(newpars2[,1]) # need base > 0
newpars2[,2] <- pmin(newpars2[,2], 1) # need peak < 1
} else {
if (pairedType == 1) {
## Keep the original pars from newpars
newpars2 <- newpars
} else if (pairedType == 2) { # here, add random noise
## Keep the original pars from newpars
orig_pars <- newpars
## Then make one with mean 0
pars2 <- pars
pars2$mean[] <- 0
pars2$sigma <- pars2$sigma*pairMag
## This gets the variance
varpars <- do.call(rmvnorm, as.list(c(n, pars2)))
## And then we make our paired parameters
newpars2 <- orig_pars + varpars
newpars2[,1] <- abs(newpars2[,1]) # need base > 0
newpars2[,2] <- pmin(newpars2[,2], 1) # need peak < 1
}
}
spars2 <- split(newpars2, row(newpars2))
ipn <- ifelse(paired, 0, n)
dts2 <- lapply(seq_len(n), function(x) {
pp <- spars2[[x]]
dt <- data.table(id = x + ipn, #ipn is 0 if paired
time = time,
group = "B",
true = eyetrackSim:::logistic_f(pp, time))
if (ar1) {
# if paired don't add any more ar1 error
dt[, fixations := addARerror(val = true, sig = sigv, rho = rhop)]
} else {
dt[, fixations := mean(rbinom(trials, 1, true)), by = time]
}
})
dts2 <- data.table::rbindlist(dts2)
dts <- data.table::rbindlist(list(dts1, dts2))
return(list(dts = dts, parsA = newpars, parsB = newpars2))
}
singleMeans_feb <- function(n, trials, pars, paired, ar1, time) {
pars <- pars[[1]]
sigv <- 0.25 / sqrt(trials)
group1 <- createSingleMeanSubs_feb(n, ar1, pars = pars, sig = sigv, rho = 0.8,
trials = trials, time = time)
if (paired) {
# This just adds gaussian noise to first group
group2 <- createSingleMeanSubs_feb(n, ar1, pars, rho = 0, sig = sigv, gg = "B",
trials = trials, time=time)
} else {
group2 <- createSingleMeanSubs_feb(n, ar1, pars, rho = 0.8, sig = sigv, gg = "B",
trials = trials, time = time)
}
dts <- rbindlist(list(group1, group2))
parsA <- matrix(pars, ncol = 4, nrow = n, byrow = TRUE)
return(list(dts = dts, parsA = parsA, parsB = parsA))
}
## Pars are from jakes paper
# but using more realistic values actually because xo of 200 is retarded
createSingleMeanSubs_feb <- function(n, ar1 = FALSE, pars = c(0, 0.9, 0.0025, 750),
rho = 0.8, sig = 0.025, gg = "A", trials, time) {
if (length(pars) != 4) stop("4 pars for single mean subs")
## Indicates if paired
ipn <- ifelse(rho == 0, 0, n)
dts1 <- lapply(seq_len(n), function(x) {
dt <- data.table(id = x + ipn, # ipn is 0 if paired
time = time,
group = gg,
true = eyetrackSim:::logistic_f(pars, time))
if (ar1) {
dt[, fixations := addARerror(val = true, rho, sig = sig)]
} else {
dt[, fixations := mean(rbinom(trials, 1, true)), by = time]
}
})
rbindlist(dts1)
}
#' Create ar1 error
#'
#' @export
addARerror <- function(val, rho = 0.8, sig = 0.025) {
## Let's make a maybe possibility for paired (kinda)
if (rho == 0) {
w <- rnorm(length(val), mean = 0, sd = sig)
val <- val + w
return(val)
}
n <- length(val)
w <- rnorm(n, mean = 0, sd = sig)
e <- numeric(n)
e[1] <- w[1]
for (i in 2:n) {
e[i] <- rho*e[i-1] + w[i]
}
#e[1] <- 0
#e <- e + w
val <- val + e
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.