MoR | R Documentation |
An S4 class to represent a multivariate mixture of regression model. The model follows [minka-linear](https://tminka.github.io/papers/minka-linear.pdf) . The model corresponds to the following generative model:
π \sim Dirichlet(α)
Z_i \sim \mathcal{M}(1,π)
V_k \sim \mathcal{W}(\varepsilon^{-1},n_0)
A_k \sim \mathcal{MN}(0,(V_k)^{-1},τ XX^\top)
Y_{i.}|X_{i.}, A_k, Z_{ik}=1 \sim \mathcal{N}(A_k x_{i.},V_{k}^{-1})
with \mathcal{W}(ε^{-1},n_0) the Wishart distribution and \mathcal{MN} the matrix-normal distribution.
The MoR-class
must be used when fitting a simple Mixture of Regression whereas the MoRPrior-class
must be used when fitting a CombinedModels-class
.
MoRPrior(formula, tau = 0.001, N0 = NaN, epsilon = as.matrix(NaN)) MoR(formula, alpha = 1, tau = 0.1, N0 = NaN, epsilon = as.matrix(NaN))
formula |
a |
tau |
Prior parameter (inverse variance) default 0.001 |
N0 |
Prior parameter (default to NaN, in this case N0 will be fixed equal to the number of columns of Y.) |
epsilon |
Covariance matrix prior parameter (default to NaN, in this case epsilon will be fixed to a diagonal variance matrix equal to 0.1 time the variance of the regression residuals with only one cluster.) |
alpha |
Dirichlet prior parameter over the cluster proportions (default to 1) |
a MoRPrior-class
object
a MoR-class
object
MoRFit-class
, MoRPath-class
Other DlvmModels:
CombinedModels
,
DcLbm
,
DcSbm
,
DiagGmm
,
DlvmPrior-class
,
Gmm
,
Lca
,
MoM
,
MultSbm
,
Sbm
,
greed()
MoRPrior(y ~ x1 + x2) MoRPrior(y ~ x1 + x2, N0 = 100) MoRPrior(cbind(y1, y2) ~ x1 + x2, N0 = 100) MoR(y ~ x1 + x2) MoR(y ~ x1 + x2, N0 = 100) MoR(cbind(y1, y2) ~ x1 + x2, N0 = 100)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.