#' clean_tow
#'
#' @param
#' events_data A data.frame of haul events from the weathervane scallop survey
#'
#'
#' @return tows data.frame
#' @export clean_tow
#'
#' @examples
#'
#' # Must have a defined analysis year
#' # YEAR <- 2019
#'
#' tows <- clean_tow(events_data)
#'
clean_tow <- function(events_data){
output_dir <- file.path("output", YEAR)
if (!dir.exists(output_dir)){
dir.create(output_dir)
} else {
print("Good to go!")
}
if(YEAR < 2019){
events_data %>%
dplyr::filter(YEAR==YEAR,
GEAR_PERFORMANCE_CODE_SW == 1,
STATION_TYPE %in%
c("Standard", "Repeat", "Standard Non-Selected")) %>%
# multiple station types
dplyr::transmute(tow_id = EVENT_ID,
Bed = factor(BED_SW),
area_swept = TOW_LENGTH_DESIGNATED * 0.00131663,
# in nautical miles
#area_swept = TOW_LENGTH_FIELD * 0.00131663,
# in nautical miles - switched for 2018 to make run before getting complete dataset from Mumm
station = STATION_ID) %>%
dplyr::mutate(bedsta = paste0(tow_id, station)) -> x
} else {
events_data %>%
dplyr::filter(gear_perf == 1,
haul_type == 10) %>%
dplyr::transmute(tow_id = tow,
Bed = factor(bed_code),
area_swept = distance * 0.00131663, # in nautical miles
station = station) %>%
dplyr::mutate(bedsta = paste0(tow_id, station)) -> x
}
# make sure that there are no duplicate data
if(dim(x)[1] != length(unique(x$bedsta))) {
stop("Repeated station tows")
} else {
select(x, -station, - bedsta) -> x
}
# save the output
write_csv(x, here::here(paste0("output/", YEAR, "/tows.csv")))
x
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.