plotQuantitative | R Documentation |
This function takes as input a data.frame
with genetic expression
count data, and uses a bootstrapped leave-one-out cross validation procedure
with logistic regression to allow for numeric and graphical comparison
across any number of genetic signatures. It creates a boxplot of bootstrapped
AUC values.
plotQuantitative(
df.input,
targetVec.num,
signature.list = NULL,
signature.name.vec = NULL,
num.boot = 100,
pb.show = TRUE,
name = "Signature Evaluation: Bootstrapped AUCs",
fill.col = "white",
outline.col = "black",
abline.col = "red",
rotateLabels = FALSE
)
df.input |
a |
targetVec.num |
a numeric binary vector of the response variable.
The vector should be the same number of rows as |
signature.list |
a |
signature.name.vec |
A vector specifying the names of the signatures
to be compared. This should be the same length as |
num.boot |
an integer specifying the number of bootstrap iterations. |
pb.show |
logical. If |
name |
a character string giving a name for the outputted boxplot of
bootstrapped AUCs. The default is |
fill.col |
the color to be used to fill the boxplots.
The default is |
outline.col |
the color to be used for the boxplot outlines.
The default is |
abline.col |
the color to be used for the dotted line at AUC = 0.5
(the chance line). The default is |
rotateLabels |
logical. If |
a boxplot comparing the bootstrapped AUCs of inputted signatures
inputTest <- matrix(rnorm(1000), 100, 20,
dimnames = list(paste0("gene", seq.int(1, 100)),
paste0("sample", seq.int(1, 20))))
inputTest <- as.data.frame(inputTest)
targetVec <- sample(c(0,1), replace = TRUE, size = 20)
signature.list <- list(sig1 = c("gene1", "gene2", "gene3"),
sig2 = c("gene4", "gene5", "gene6"))
signature.name.vec <- c("sig1", "sig2")
num.boot <- 5
plotQuantitative(inputTest, targetVec.num = targetVec,
signature.list = signature.list,
signature.name.vec = signature.name.vec,
num.boot = num.boot, rotateLabels = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.