QCRSC | R Documentation |
Implementation of Quality QC-RSC algorithm for signal drift and batch effect correction within/across a multi-batch direct infusion mass spectrometry (DIMS) and liquid chromatography mass spectrometry (LCMS) datasets. This version supports missing values, but requires at least 4 data point for quality control (QC) samples measured within each analytical batch. The smoothing parameter (spar) can be optimised using leave-one-out cross validation to avoid overfitting.
QCRSC(
df,
order,
batch,
classes,
spar = 0,
log = TRUE,
minQC = 5,
qc_label = "QC",
spar_lim = c(-1.5, 1.5)
)
df |
A matrix-like (e.g. an ordinary matrix, a data frame) or
RangedSummarizedExperiment-class object with
all values of class |
order |
|
batch |
|
classes |
|
spar |
|
log |
|
minQC |
|
qc_label |
|
spar_lim |
A 2 element numeric vector containing the min and max
values of spar when searching for an optimum. Default |
Object of class SummarizedExperiment
. If input data are a
matrix-like (e.g. an ordinary matrix, a data frame) object, function returns
the same R data structure as input with all value of data type
numeric()
.
Andris Jankevics a.jankevics@bham.ac.uk
Kirwan et al, Anal. Bioanal. Chem., 405 (15), 2013 https://dx.doi.org/10.1007/s00216-013-6856-7
classes <- MTBLS79$Class
batch <- MTBLS79$Batch
order <- c(1:ncol(MTBLS79))
out <- QCRSC(df = MTBLS79[1:10, ], order = order, batch = MTBLS79$Batch,
classes = MTBLS79$Class, spar = 0, minQC = 4)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.