Description Usage Arguments Value Author(s) Examples
View source: R/simulations_tab.R
Function for tabulating the means and standard deviation of rewards and belief state if extant for nbSimul simulations, following the optimal policy.
1 2 | simulations_tab(p0, pm, d0, dm, ds, V, Cm, Cs, state_prior, Tmax,
disc = 0.95, nbSimul = 100)
|
p0 |
Local probability of persitance : P(extant/extant, survey or stop). |
pm |
Local probability of persitance if manage : P(extant/extant, manage). |
d0 |
Local probability of detection : P(present/extant, stop). |
dm |
Local probability of detection : P(present/extant, manage). |
ds |
Local probability of detection if survey : P(present/extant, survey). |
V |
Estimated economic value of the species ($/yr). |
Cm |
Estimated cost of managing ($/yr). |
Cs |
Estimated cost of survey ($/yr). |
state_prior |
Initial belief state, vector of 2 values (belief state extant and extinct), between 0 and 1. |
Tmax |
Horizon of the simulation. Integer |
disc |
Discount factor used to compute the policy (default 0.95) |
nbSimul |
Number of simulations to run (default 100). Integer |
A data.frame. Each row corresponds to a time step. The columns are:
mean_belief |
Mean of the belief state extant |
up_belief |
Upper bound (95%) of the belief state extant |
low_belief |
Lower bound (95%) of the belief state extant |
mean_reward |
Mean of the discounted intant reward |
up_reward |
Upper bound (95%) of the discounted intant reward |
low_reward |
Lower bound (95%) of the discounted intant reward |
Luz Pascal
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ## Not run:
#values for Sumatran tigers
pen <- 0.1
p0 <- 1-pen
pem <- 0.05816
pm <- 1 - pem
V <- 175.133
Cm <- 18.784
Cs <- 10.840
d0 <- 0.01
dm <- 0.01
ds <- 0.78193
#Initial belief state
state_prior <- c(0.9,0.1) #extant : 0.9, extinct : 0.1
#Horizon of the simulation
Tmax <- 20
simulations_tab(p0, pm, d0, dm, ds, V, Cm, Cs, state_prior, Tmax)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.