tab_actions: Compute policy if species not seen

Description Usage Arguments Value Author(s) Examples

View source: R/tab_actions.R

Description

Computes the best policy to follow if the species is not seen. Summarized in a data.frame

Usage

1
tab_actions(transition, observation, reward, state_prior, disc = 0.95, Tmax = 100)

Arguments

transition

Transition matrix between states, can be computed using tr

observation

observation matrix for each action, can be computed using obs

reward

reward matrix, can be computed using rew

state_prior

Initial belief state, vector of 2 values (belief state extant and extinct), between 0 and 1.

disc

Discount factor used to compute the policy (default 0.95)

Tmax

Maximal horizon time step

Value

data.frame summarising the policy if the species is not seen. actions (1 = Manage, 2 = Survey, 3 = Stop) and number of successive years per action.

Author(s)

Luz Pascal

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
## Not run: 
#values for Sumatran tigers
pen <- 0.1
p0 <- 1-pen
pem <- 0.05816
pm <- 1 - pem
V <- 175.133
Cm <- 18.784
Cs <- 10.840
d0 <- 0.01
dm <- 0.01
ds <- 0.78193

#buiding the matrices of the problem
t <- smsPOMDP::tr(p0, pm, d0, dm, ds, V, Cm, Cs) #transition matrix
o <- smsPOMDP::obs(p0, pm, d0, dm, ds, V, Cm, Cs)#observation matrix
r <- smsPOMDP::rew(p0, pm, d0, dm, ds, V, Cm, Cs)#reward matrix
state_prior <- c(1,0)

tab_actions(t, o, r, state_prior)

## End(Not run)

conservation-decisions/smsPOMDP documentation built on Oct. 27, 2020, 10:44 p.m.