# Interpreting (k-means) clusters as ordinations on the Motor Trends data
mtcars %>%
scale() %>%
kmeans(centers = 3) %>%
as_tbl_ord() %>%
augment() %>%
print() -> mtcars_kmeans
mtcars_kmeans %>%
tidy() %>%
transform(.sdev = sqrt(.withinss / .size)) %>%
print() -> mtcars_coord
# discriminate between clusters 1 and 2
mtcars_kmeans %>%
ggbiplot(color = factor(.cluster)) +
geom_jitter(stat = "rows", aes(shape = .cluster), width = .2, height = .2) +
geom_cols_vector(aes(color = `3`)) +
scale_color_distiller(type = "div", limits = c(-1, 1)) +
geom_cols_text_radiate(aes(label = .name)) +
ggtitle(
"Performance and design variable loadings onto clusters 1 and 2",
"Color indicates loadings onto cluster 3"
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.