#' @import data.table
#' @import dplyr
#' @import caret
#' @import glmnet
#' @import metafor
#' @import poolr
#' @import e1071
#' @import gbm
#' @import nnet
#' @importFrom stats glm as.formula p.adjust predict quantile rbinom rnorm sd uniroot
logistic_prescreen = function(summary.dcrt,
tt,
aa,
cc,
post.period,
comorbid,
siteid,
hosp,
res.out.90.final,
res.out.180.final,
res.conf.final){
if(post.period==90){
res.out.final=res.out.90.final
}else if(post.period==180){
res.out.final=res.out.180.final
}
if(aa==1){
summary.tmp=filter(summary.dcrt,
age>18,
age<=49,
period==tt,
hospital_flag==hosp)
age="18to49"
}else if(aa==2){
summary.tmp=dplyr::filter(summary.dcrt,
age>49,
age<=69,
period==tt,
hospital_flag==hosp)
age="49to69"
} else{
summary.tmp=dplyr::filter(summary.dcrt,
age>69,
period==tt,
hospital_flag==hosp)
age="69plus"
}
summary.tmp=as.matrix(summary.tmp)
rownames(summary.tmp)=summary.tmp[,"patient_num"]
# select comorbid combo
pat1=tryCatch(rownames(res.conf.final)[res.conf.final[,colnames(comorbid)[1]]==comorbid[cc,1]],error=function(e){NA})
pat2=tryCatch(rownames(res.conf.final)[res.conf.final[,colnames(comorbid)[2]]==comorbid[cc,2]],error=function(e){NA})
pat3=tryCatch(rownames(res.conf.final)[res.conf.final[,colnames(comorbid)[3]]==comorbid[cc,3]],error=function(e){NA})
if(sum(is.na(pat1))>0 | sum(is.na(pat2))>0 | sum(is.na(pat3))>0 ){
return(NULL)
}else{
list.pat=Filter(Negate(anyNA),list(pat1,pat2,pat3))
pat.keep=as.character(intersect(Reduce(intersect, list.pat),summary.tmp[,"patient_num"]))
pat.keep=as.character(intersect(pat.keep,rownames(res.out.final)))
pat.keep=as.character(intersect(pat.keep,rownames(res.conf.final)))
if(length(pat.keep)>100 & (0.02*length(pat.keep)<=sum(as.numeric(summary.tmp[pat.keep,"exposure"])))){
print(paste0("strata_size: ",length(pat.keep)))
summary.tmp=summary.tmp[pat.keep,]
res.out.tmp=res.out.final[pat.keep,]
res.conf.tmp=res.conf.final[pat.keep,]
#X = as.matrix(res.conf.tmp)
Z = as.matrix(res.out.tmp)
prev_Z=apply(Z,MARGIN = 2,mean)
index.keep.Z = names(prev_Z)[prev_Z>0.01]
### Preliminary Screening using Logistic model
#print("starting logistic screening")
formula=as.formula(paste0("Y ~A_junk",sep=""))
A_junk=as.numeric(summary.tmp[,"exposure"])
index.keep.Z.filter=NULL
for(zz in 1:length(index.keep.Z)){
tryCatch({
index = index.keep.Z[zz]
index = as.character(index)
Y=Z[,index]
junk=cbind.data.frame(Y,A_junk)
fit.glm=glm(formula,family="binomial",maxit=25,data=junk)
fit.glm=summary(fit.glm);
index.keep.Z.filter=rbind.data.frame(index.keep.Z.filter,
cbind.data.frame("siteid"=siteid,
"phecode"=index,
"zz"=zz,
"method"="logistic_marginal",
"age"=age,
"period"=tt,
"hospital_flag"=hosp,
"post_period"=post.period,
"comorbid"=paste0("T2D_",comorbid[cc,1],"_obesity_",comorbid[cc,2],"_hyp_",comorbid[cc,3]),
"beta"=fit.glm$coefficients["A_junk",1],
"se"=fit.glm$coefficients["A_junk",2],
"pval"=fit.glm$coefficients["A_junk",4],
"n"=nrow(junk)))
},error=function(e){NA})
}
# save(testing.output,
# file=paste0(dir.repo,siteid,"_conditional_testing_results/",
# siteid,"_tt_",tt,"_aa_",aa,"_cc_",cc,"_",post.period,".Rdata"))
#
return(index.keep.Z.filter)
}else{stop(paste0("length of path.keep = ",length(path.keep)))}
}
} # end of function
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.