ar_eogcor | R Documentation |
Checks the correlation between individual components of an eeg_ICA
decomposition and the electrooculogram channels of an eeg_epochs
dataset.
ar_eogcor(decomp, data, ...)
## S3 method for class 'eeg_ICA'
ar_eogcor(
decomp,
data,
HEOG,
VEOG,
threshold = NULL,
plot = TRUE,
bipolarize = TRUE,
method = c("pearson", "kendall", "spearman"),
verbose = TRUE,
...
)
decomp |
An |
data |
The original |
... |
Other parameters |
HEOG |
Horizontal eye channels |
VEOG |
Vertical eye channels |
threshold |
Threshold for correlation (r). Defaults to NULL, automatically determining a threshold. |
plot |
Plot correlation coefficient for all components |
bipolarize |
Bipolarize the HEOG and VEOG channels? |
method |
Correlation method. Defaults to Pearson. |
verbose |
Print informative messages. Defaults to TRUE. |
A character vector of component names that break the threshold.
ar_eogcor(eeg_ICA)
: Method for eeg_ICA
objects.
Matt Craddock, matt@mattcraddock.com
Chaumon, M., Bishop, D.V., Busch, N.A. (2015). A practical guide to the selection of independent components of the electroencephalogram for artifact correction. J Neurosci Methods. Jul 30;250:47-63. doi: 10.1016/j.jneumeth.2015.02.025
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.