Description Usage Arguments Value Examples
Excess CIF prediction based on newdata and geepack::geese estimates.
1 2  | 
model | 
 geese object. To be defined if coefs and vcov are null.  | 
times | 
 vector of timepoints as the one used to estimate the GEE model  | 
formula | 
 model formula  | 
dataset | 
 new data  | 
strata.levels | 
 if CIF predicted for different strata, define strata levels  | 
coefs | 
 coefficient estimates (  | 
vcov | 
 coefficient variance and covariance matrix (  | 
link | 
 link from the gee model  | 
dataset with predicted values; ready to be used with ggplot2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  | dcif<-sim.data.MatchCR(1000,5)
tp<-c(0.5,1,2,5,10,15,25)
setdcif1<-compcomp(timereg::Event(time=FALSE,time2=time,cause=cause)~X1+X2, 
                   data=dcif, cluster=i, idControl=j, time.points=tp,
                   cens.formula=NULL, event=1)
exc.cif.mod1<-geepack::geese(Rt~-1+factor(h)+X1+X2,
                    data=setdcif1,
                    family="gaussian", #error distribution
                    mean.link = "log", #link function for Rt
                    corstr="independence", #correlation structure
                    id=clust.num, #cluster vector
                    weights=weights #censoring weights 
                    )
### prediction: 
af<-paste0("-1+factor(h)+X1+X2") #model formula
newd<-data.frame(expand.grid(h=tp,X1=c(0,1),X2=c(0.8,1.5,2.5))) # newdata
# define the different subjects for whom the excess risk is predicted
strata.levels<-factor(1:6, levels=1:6,
                      labels =paste0(rep("X1=",6),
                      expand.grid(X1=c(0,1),X2=c(0.8,1.5,2.5))[,1], 
                      rep(", X2=",6),
                      expand.grid(X1=c(0,1),X2=c(0.8,1.5,2.5))[,2]))
pred.exc.cif<-ecif.pred(exc.cif.mod1,times = tp,dataset = newd,
                        formula = af, strata.levels = strata.levels)
head(pred.exc.cif,8)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.