library(reclin)
library(tidyverse)
library(purrr)
theme_set(theme_minimal())
data_dir <- file.path('TokenLink','data')
setwd('C:/Users/hswerdfe/projects/')
orig_dat <-
data_dir |>
file.path('generated_dataset.csv') |>
read_csv() |>
replace_na(list(company_name = '',
address = '',
first_name = '',
last_name = '',
age = 0
))|>
mutate_all(as.character)
edited_dat <-
data_dir |>
file.path('generated_dataset_random_edits.csv') |>
read_csv() |>
replace_na(list(company_name = '',
address = '',
first_name = '',
last_name = '',
age = 0
)) |>
mutate_all(as.character)
bind_cols(orig_dat, edited_dat |> rename_all(\(x){paste0(x,"_edited")})) |>
{\(.)select(., order(colnames(.)))}() |>
sample_n(5) |>
knitr::kable(caption = 'original and edited data')
blocked_pairs <- reclin_pair_blocking(x = orig_dat,
y = edited_dat,
blocking_var = c('first_name', 'last_name'), #Block on Any of these Columns
token_types = c('company_name', 'address'), #Block on Any of these tokens
col_nms_x = c('company_name', 'address'), # Column Names
col_nms_y = c('company_name', 'address'), # Column Names
min_token_u_prob = 0.0000784) # min u_prob to consider blocking on
blocked_pairs |>
as_tibble()
# Compare pairs in Reclin using First and last name
p <- reclin::compare_pairs(blocked_pairs,
by = c('first_name', 'last_name'),
default_comparator = jaro_winkler(0.9))
m <- problink_em(p)
p <- score_simsum(p, var = "sim_sum")
p <- score_problink(p, model = m, var = "scores", type = 'all')
p |>
sample_n(5) |>
knitr::kable(caption = 'Show scores cenerated from Reclin')
refined_p <-
refine_posterior(p = p,
x_dat = orig_dat,
y_dat = edited_dat,
weights_nm = 'scores_weight',
args_x = list(col_nms = c('company_name', 'address')),
args_y = list(col_nms = c('company_name', 'address')),
token_types = c('company_name', 'address')
)
refined_p |>
mutate(is_same = (x == y)) |>
mutate(delta_belief = posterior - priori) |>
ggplot(aes(y = delta_belief, x = priori, color = is_same )) +
geom_jitter(alpha = 0.05, width = 0.05, height = 0.05) +
geom_hline(yintercept=0, linetype="dashed", color = "black", size = 1.25) +
scale_x_continuous(labels = scales::percent) +
scale_y_continuous(labels = scales::percent) +
labs(title = 'How much do the token columns change our belief in the Match?',
y = 'Change in Belief',
color = 'Actually the same') +
guides(colour = guide_legend(override.aes = list(alpha = 1)))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.