# Copyright 2020 Observational Health Data Sciences and Informatics
#
# This file is part of cervello
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#' @details
#' Runs basic characterization for each cohort package
#'
#' @param connectionDetails An object of type \code{connectionDetails} as created using the
#' \code{\link[DatabaseConnector]{createConnectionDetails}} function in the
#' DatabaseConnector package.
#' @param cdmDatabaseSchema Schema name where your patient-level data in OMOP CDM format resides.
#' Note that for SQL Server, this should include both the database and
#' schema name, for example 'cdm_data.dbo'.
#' @param cohortDatabaseSchema Schema name where intermediate data can be stored. You will need to have
#' write priviliges in this schema. Note that for SQL Server, this should
#' include both the database and schema name, for example 'cdm_data.dbo'.
#' @param cohortTable The name of the table that will be created in the work database schema.
#' This table will hold the exposure and outcome cohorts used in this
#' study.
#' @param oracleTempSchema Should be used in Oracle to specify a schema where the user has write
#' priviliges for storing temporary tables.
#' @param outputFolder Name of local folder where the results were generated; make sure to use forward slashes
#' (/). Do not use a folder on a network drive since this greatly impacts
#' performance.
#'
#' @export
runBasicCohortCharacterization <- function(connection,
cdmDatabaseSchema,
cohortDatabaseSchema,
cohortTable,
oracleTempSchema,
cohortId,
outputFolder,
minCellCount = 5) {
covariateSettings <- FeatureExtraction::createDefaultCovariateSettings()
covariateSettings$DemographicsAge <- TRUE # Need to Age (Median, IQR)
covariateSettings$DemographicsPostObservationTime <- TRUE # Need to calculate Person-Year Observation post index date (Median, IQR)
covariateData2 <- FeatureExtraction::getDbCovariateData(connection = connection,
cdmDatabaseSchema = cdmDatabaseSchema,
cohortDatabaseSchema = cohortDatabaseSchema,
cohortTable = cohortTable,
cohortId = cohortId,
covariateSettings = covariateSettings,
aggregated = TRUE)
summary(covariateData2)
result <- FeatureExtraction::createTable1(covariateData2, specifications = getCustomizeTable1Specs(), output = "one column")
# FeatureExtraction::saveCovariateData(covariateData2, file.path(outputFolder,paste0(cohortId,"_covariates")))
# print(result, row.names = FALSE, right = FALSE)
analysisFolder <- outputFolder #right now putting the results in the output folder may in the future create a separate folder
if (!file.exists(analysisFolder)) {
dir.create(analysisFolder, recursive = TRUE)
}
ParallelLogger::logInfo(paste("Writing table 1 for", getCancerDataSetName(cohortId)))
write.csv(result, file.path(outputFolder, paste0(cohortId, "_table1.csv")), row.names = FALSE)
}
getCustomizeTable1Specs <- function() {
s <- FeatureExtraction::getDefaultTable1Specifications()
appendedTable1Spec <- rbind(s, c("Age", 2, "")) # Add Age as a continuous variable to table1
appendedTable1Spec <- rbind(appendedTable1Spec, c("PriorObservationTime", 8, "")) # Add Observation prior index date
appendedTable1Spec <- rbind(appendedTable1Spec, c("PostObservationTime", 9, "")) # Add Observation post index date
return(appendedTable1Spec)
}
#Retrieves and writes yearly inclusion counts for all cohorts
calculatePerYearCohortInclusion <- function(connection, package,
cohortDatabaseSchema,
cohortTable,
oracleTempSchema,
outputFolder,
minCellCount) {
sql <- SqlRender::loadRenderTranslateSql(sqlFilename = "GetCountsPerYear.sql",
packageName = package,
dbms = attr(connection, "dbms"),
target_database_schema = cohortDatabaseSchema,
study_cohort_table = cohortTable,
tempEmulationSchema = oracleTempSchema)
counts <- DatabaseConnector::querySql(connection, sql)
filtered_counts <- counts[counts["PERSON_COUNT"] > minCellCount,]
analysisFolder <- outputFolder #right now putting the results in the output folder may in the future create a separate folder
if (!file.exists(analysisFolder)) {
dir.create(analysisFolder, recursive = TRUE)
}
output <- file.path(analysisFolder, "cohort_counts_per_year.csv")
write.table(filtered_counts, file = output, sep = ",", row.names = FALSE, col.names = TRUE)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.