add_decision_tree_partykit <- function() {
parsnip::set_model_engine("decision_tree", mode = "regression", eng = "partykit")
parsnip::set_dependency("decision_tree", eng = "partykit", pkg = "partykit")
parsnip::set_encoding(
model = "decision_tree",
eng = "partykit",
mode = "regression",
options = list(
predictor_indicators = "none",
compute_intercept = FALSE,
remove_intercept = FALSE,
allow_sparse_x = FALSE
)
)
parsnip::set_fit(
model = "decision_tree",
eng = "partykit",
mode = "regression",
value = list(
interface = "formula",
protect = c("formula", "data", "weights"),
func = c(pkg = "parsnip", fun = "ctree_train"),
defaults = list()
)
)
parsnip::set_model_arg(
model = "decision_tree",
eng = "partykit",
parsnip = "min_n",
original = "minsplit",
func = list(pkg = "dials", fun = "min_n"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "decision_tree",
eng = "partykit",
parsnip = "tree_depth",
original = "maxdepth",
func = list(pkg = "dials", fun = "tree_depth"),
has_submodel = FALSE
)
parsnip::set_pred(
model = "decision_tree",
eng = "partykit",
mode = "regression",
type = "numeric",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict"),
args =
list(
object = rlang::expr(object$fit),
newdata = rlang::expr(new_data),
type = "response"
)
)
)
# ----------------------------------------------------------------------------
parsnip::set_model_engine("decision_tree", mode = "classification", eng = "partykit")
parsnip::set_dependency("decision_tree", eng = "partykit", pkg = "partykit")
parsnip::set_encoding(
model = "decision_tree",
eng = "partykit",
mode = "classification",
options = list(
predictor_indicators = "none",
compute_intercept = FALSE,
remove_intercept = FALSE,
allow_sparse_x = FALSE
)
)
parsnip::set_fit(
model = "decision_tree",
eng = "partykit",
mode = "classification",
value = list(
interface = "formula",
protect = c("formula", "data", "weights"),
func = c(pkg = "parsnip", fun = "ctree_train"),
defaults = list()
)
)
parsnip::set_model_arg(
model = "decision_tree",
eng = "partykit",
parsnip = "min_n",
original = "minsplit",
func = list(pkg = "dials", fun = "min_n"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "decision_tree",
eng = "partykit",
parsnip = "tree_depth",
original = "maxdepth",
func = list(pkg = "dials", fun = "tree_depth"),
has_submodel = FALSE
)
parsnip::set_pred(
model = "decision_tree",
eng = "partykit",
mode = "classification",
type = "class",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict"),
args =
list(
object = rlang::expr(object$fit),
newdata = rlang::expr(new_data),
type = "response"
)
)
)
parsnip::set_pred(
model = "decision_tree",
eng = "partykit",
mode = "classification",
type = "prob",
value = list(
pre = NULL,
post = function(result, object) tibble::as_tibble(result),
func = c(fun = "predict"),
args =
list(
object = rlang::expr(object$fit),
newdata = rlang::expr(new_data),
type = "prob"
)
)
)
}
add_rand_forest_partykit <- function() {
parsnip::set_model_engine("rand_forest", mode = "regression", eng = "partykit")
parsnip::set_dependency("rand_forest", eng = "partykit", pkg = "partykit")
parsnip::set_encoding(
model = "rand_forest",
eng = "partykit",
mode = "regression",
options = list(
predictor_indicators = "none",
compute_intercept = FALSE,
remove_intercept = FALSE,
allow_sparse_x = FALSE
)
)
parsnip::set_fit(
model = "rand_forest",
eng = "partykit",
mode = "regression",
value = list(
interface = "formula",
protect = c("formula", "data", "weights"),
func = c(pkg = "parsnip", fun = "cforest_train"),
defaults = list()
)
)
parsnip::set_model_arg(
model = "rand_forest",
eng = "partykit",
parsnip = "min_n",
original = "minsplit",
func = list(pkg = "dials", fun = "min_n"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "rand_forest",
eng = "partykit",
parsnip = "tree_depth",
original = "maxdepth",
func = list(pkg = "dials", fun = "tree_depth"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "rand_forest",
eng = "partykit",
parsnip = "mtry",
original = "mtry",
func = list(pkg = "dials", fun = "mtry"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "rand_forest",
eng = "partykit",
parsnip = "trees",
original = "ntree",
func = list(pkg = "dials", fun = "trees"),
has_submodel = FALSE
)
parsnip::set_pred(
model = "rand_forest",
eng = "partykit",
mode = "regression",
type = "numeric",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict"),
args =
list(
object = rlang::expr(object$fit),
newdata = rlang::expr(new_data),
type = "response"
)
)
)
# ----------------------------------------------------------------------------
parsnip::set_model_engine("rand_forest", mode = "classification", eng = "partykit")
parsnip::set_dependency("rand_forest", eng = "partykit", pkg = "partykit")
parsnip::set_encoding(
model = "rand_forest",
eng = "partykit",
mode = "classification",
options = list(
predictor_indicators = "none",
compute_intercept = FALSE,
remove_intercept = FALSE,
allow_sparse_x = FALSE
)
)
parsnip::set_fit(
model = "rand_forest",
eng = "partykit",
mode = "classification",
value = list(
interface = "formula",
protect = c("formula", "data", "weights"),
func = c(pkg = "parsnip", fun = "cforest_train"),
defaults = list()
)
)
parsnip::set_model_arg(
model = "rand_forest",
eng = "partykit",
parsnip = "min_n",
original = "minsplit",
func = list(pkg = "dials", fun = "min_n"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "rand_forest",
eng = "partykit",
parsnip = "tree_depth",
original = "maxdepth",
func = list(pkg = "dials", fun = "tree_depth"),
has_submodel = FALSE
)
parsnip::set_pred(
model = "rand_forest",
eng = "partykit",
mode = "classification",
type = "class",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict"),
args =
list(
object = rlang::expr(object$fit),
newdata = rlang::expr(new_data),
type = "response"
)
)
)
parsnip::set_pred(
model = "rand_forest",
eng = "partykit",
mode = "classification",
type = "prob",
value = list(
pre = NULL,
post = function(result, object) tibble::as_tibble(result),
func = c(fun = "predict"),
args =
list(
object = rlang::expr(object$fit),
newdata = rlang::expr(new_data),
type = "prob"
)
)
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.