# DGB
## Median Difference from Two (Independent) Samples
ci.median.is <- function(alpha, y1, y2) {
# Computes confidence interval for a difference of
# population medians in a 2-group design
# Arguments:
# alpha: alpha level for 1-alpha confidence
# y1: vector of scores for group 1
# y2: vector of scores for group 2
# Values:
# confidence interval
z <- qnorm(1 - alpha/2)
n1 <- length(y1)
y1 <- sort(y1)
n2 <- length(y2)
y2 <- sort(y2)
median1 <- median(y1)
median2 <- median(y2)
a1 <- round((n1 + 1)/2 - sqrt(n1))
if (a1 < 1) {a1 = 1}
L1 <- y1[a1]
U1 <- y1[n1 - a1 + 1]
p <- pbinom(a1 - 1, size = n1, prob = .5)
z0 <- qnorm(1 - p)
se1 <- (U1 - L1)/(2*z0)
a2 <- round((n2 + 1)/2 - sqrt(n2))
if (a2 < 1) {a2 = 1}
L2 <- y2[a2]
U2 <- y2[n2 - a2 + 1]
p <- pbinom(a2 - 1, size = n2, prob = .5)
z0 <- qnorm(1 - p)
se2 <- (U2 - L2)/(2*z0)
diff <- median1 - median2
se <- sqrt(se1^2 + se2^2)
L <- diff - z*se
U <- diff + z*se
out <- t(c(median1, median2, diff, se, L, U))
colnames(out) <- c("Median1", "Median2", "Median1-Median2", "SE", "LL", "UL")
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.