#' Prediction of daily hospitalized, ICU and ventilated cases.
#' @description Prediction of daily hospitalized, ICU and ventilated cases based on SIR model.
#' @import stats
#' @param obj Input. Object from function \emph{fitSIR}.
#' @param hosrate Input. Hospitalization rate of infected people (percentage between 0 to 100).
#' @param icurate Input. ICU rate of infected people (percentage between 0 to 100).
#' @param venrate Input. Ventilated rate of infected people (percentage between 0 to 100).
#' @param hms Input. Hospital market share (percentage between 0 to 100).
#' @examples ## To predicte 100 days from today (dayFT=100).
#' @examples casevolumne <- fitSIR(susceptible=4119405, Infected=3733, inihos=14,
#' @examples hosrate=2.5, hms=15, inidbt=4, mrt=14, sdis=30, dayFT=100)
#' @examples dailyhosp <- Prehos.daily(casevolumne, hosrate=2.5, icurate=0.75, venrate=0.5, hms=15)
#' @examples head(dailyhosp, 21) ## show the first 20 days
#'
#' @export
Prehos.daily <- function(obj, hosrate=2.5, icurate=0.75, venrate=0.5, hms=15) {
hrate <- (hms/100) * (hosrate/100)
irate <- (hms/100) * (icurate/100)
vrate <- (hms/100) * (venrate/100)
ts <- length(obj$result$susceptible)-1
allnewinflected <- obj$result$susceptible[1] - tail(obj$result$susceptible,-1)
ehos <- ceiling(c(0, allnewinflected * hrate))
eicu <- ceiling(c(0, allnewinflected * irate))
even <- ceiling(c(0, allnewinflected * vrate))
reps <- cbind(1:ts, diff(ehos), diff(eicu), diff(even))
reps <- rbind(c(0, 0, 0, 0), reps)
reps[reps<0] <- 0
colnames(reps) <- c("days.from.today","hosp","icu","vent")
data.frame(reps)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.