# Demo for presentation at BaselR, December 2019
# {dm} facilitates working with multiple tables
options(tibble.print_min = 6)
options(tibble.print_max = 6)
options(rlang_backtrace_on_error = "none")
##
##
##
## Greeting
## --------------------------------------------------------------------
##
##
##
# Teaser
dm::dm_nycflights13(cycle = TRUE) %>%
dm::dm_draw()
# Poll: Who is familiar with the {dplyr} package
# (grammar of data manipulation)?
# Poll: Who is familiar with the {dbplyr} package
# (using {dplyr} with databases)?
# Poll: Who has worked with databases?
# Poll: Who has worked with a software that has
# a concept of "THE DATASET"?
# Poll: Who uses more than one table/data frame
# at the same time?
##
##
##
## Why?
## --------------------------------------------------------------------
##
##
##
library(nycflights13)
# Example dataset: tables linked with each other
?flights
flights
##
##
##
## Data model
## --------------------------------------------------------------------
##
##
##
library(tidyverse)
flights_base <-
flights %>%
select(year, month, day, carrier, tailnum, origin, dest, time_hour)
flights_base
# `carrier` column also present in `airlines`, this table contains
# additional information
airlines
flights_base %>%
left_join(airlines)
##
##
##
## Keys
## --------------------------------------------------------------------
##
##
##
# `carrier` is a "primary key" in `airlines`
any(duplicated(airlines$carrier))
# `carrier` is a "foreign key" in `flights` into `airlines`
all(flights$carrier %in% airlines$carrier)
##
##
##
## Single source of truth
## --------------------------------------------------------------------
##
##
##
# Update in one single location
airlines[airlines$carrier == "UA", "name"] <-
"United broke my guitar"
airlines %>%
filter(carrier == "UA")
# ...propagates to all related records
flights_base %>%
left_join(airlines)
##
##
##
## Goal: work with one table
## --------------------------------------------------------------------
##
##
##
flights_base %>%
left_join(airlines, by = "carrier") %>%
left_join(planes, by = "tailnum") %>%
left_join(weather, by = c("origin", "time_hour")) %>%
left_join(airports, by = c("origin" = "faa")) %>%
left_join(airports, by = c("dest" = "faa"))
##
##
##
## PROBLEMS (see appendix)
## --------------------------------------------------------------------
##
## - wrong keys
## - data mismatches
## - relationship unclear
## - combinatorial explosion
##
##
##
##
##
##
## Data model object
## --------------------------------------------------------------------
##
##
##
library(dm)
# Compound object: tables, relationships, data
dm_flights <- dm_nycflights13(cycle = TRUE)
dm_flights
dm_flights %>%
dm_draw()
# Selection of tables
dm_flights %>%
dm_select_tbl(flights, airlines) %>%
dm_draw()
dm_flights %>%
dm_select_tbl(airports, airlines) %>%
dm_draw()
try(
dm_flights %>%
dm_select_tbl(bogus)
)
# Accessing tables
dm_flights %>%
pull_tbl(airlines)
dm_flights$airlines
# Table names
dm_flights %>%
src_tbls()
# NB: [, $, [[ and names() also work
##
##
##
##
##
##
## THREE USE CASES:
## --------------------------------------------------------------------
##
## 1. Work with a prepared dm object
## 2. Build a data model for your own data
## 3. Publish a dm to a relational database (and load from it)
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
## USE CASE 1: Work with a prepared dm object
## --------------------------------------------------------------------
##
##
##
##
##
##
##
##
## Joining two tables
## --------------------------------------------------------------------
##
##
##
dm_flights <- dm_nycflights13()
dm_flights %>%
dm_draw()
dm_flights %>%
dm_join_to_tbl(airlines, flights)
try(
dm_flights %>%
dm_join_to_tbl(airports, airlines)
)
##
##
##
## Joining many tables
## --------------------------------------------------------------------
##
##
##
dm_flights %>%
dm_flatten_to_tbl(flights)
##
##
##
## Filtering for data models
## --------------------------------------------------------------------
##
##
##
# Filtering on a table returns a dm object
# with
# 1. the filter applied to the table in question
# 2. the filter condition(s) stored
dm_flights %>%
dm_filter(airlines, name == "Delta Air Lines Inc.")
# the resulting `dm` can then be filtered on another table
dm_flights %>%
dm_filter(airlines, name == "Delta Air Lines Inc.") %>%
dm_filter(airports, name != "John F Kennedy Intl")
# ... and stored in another dm variable
delta_non_jfk_january <-
dm_flights %>%
dm_filter(airlines, name == "Delta Air Lines Inc.") %>%
dm_filter(airports, name != "John F Kennedy Intl") %>%
dm_filter(planes, year < 2000) %>%
dm_filter(flights, month == 1)
delta_non_jfk_january
# Querying a table applies the filters via semi-joins
# along the FK constraints to the requested table
delta_non_jfk_january %>%
tbl("planes")
# FIXME: Can this work without applying all filters?
delta_non_jfk_january %>%
dm_apply_filters() %>%
dm_join_to_tbl(flights, airlines)
delta_non_jfk_january %>%
dm_flatten_to_tbl(flights)
##
##
##
## NEW NEW NEW: Data manipulation in a dm
## --------------------------------------------------------------------
##
##
##
# A single table of a `dm` can be activated (or zoomed to),
# and subsequently be manipulated by many {dplyr}-verbs.
# Eventually, either the original table can be updated
# or the manipulated table can be inserted as a new table.
# The print output for a `dm_zoomed` looks very much like that from a normal `tibble`.
dm_flights %>%
dm_zoom_to(flights)
# Many {dplyr} verbs work on zoomed tables:
dm_flights %>%
dm_zoom_to(flights) %>%
mutate(am_pm_dep = if_else(dep_time < 1200, "am", "pm")) %>%
select(year:dep_time, am_pm_dep, everything())
# Put back into the dm:
dm_flights %>%
dm_zoom_to(flights) %>%
mutate(am_pm_dep = if_else(dep_time < 1200, "am", "pm")) %>%
select(year:dep_time, am_pm_dep, everything()) %>%
dm_update_zoomed()
# Immutable objects, like in {dplyr}
dm_flights
# Creation of a summary table:
dm_with_summary <-
dm_flights %>%
dm_zoom_to(flights) %>%
count(origin) %>%
dm_insert_zoomed("origin_count")
dm_with_summary$origin_count
dm_with_summary %>%
dm_draw()
# All relationships still available in the summary are retained:
dm_flights %>%
dm_zoom_to(flights) %>%
count(carrier, origin) %>%
dm_insert_zoomed("origin_carrier_count") %>%
dm_draw()
##
##
##
## USE CASE 2: Build a data model for your own data
## --------------------------------------------------------------------
##
##
##
##
##
##
##
##
##
##
## Build up data model from scratch
## --------------------------------------------------------------------
##
##
##
# Use `dm()` with a syntax similar to `tibble()`:
nycflights13_tbl <- dm(airlines, airports, flights, planes, weather)
nycflights13_tbl
nycflights13_tbl %>%
dm_draw()
# Alternatively, start from an empty `dm`
# and add tables via `dm_add_tbl()`:
dm() %>%
dm_add_tbl(airlines, airports, flights, planes, weather)
# Tables are not connected yet:
nycflights13_tbl %>%
dm_draw()
# Adding primary keys:
nycflights13_pk <-
nycflights13_tbl %>%
dm_add_pk(planes, tailnum) %>%
dm_add_pk(airports, faa) %>%
dm_add_pk(airlines, carrier)
nycflights13_pk %>%
dm_draw()
# FIXME: Model weak constraints, show differently in diagram (#4)
# Adding foreign keys
nycflights13_fk <-
nycflights13_pk %>%
dm_add_fk(flights, tailnum, planes) %>%
dm_add_fk(flights, origin, airports) %>%
dm_add_fk(flights, dest, airports) %>%
dm_add_fk(flights, carrier, airlines, check = TRUE)
nycflights13_fk %>%
dm_draw()
# Color it!
dm_get_available_colors()
nycflights13_base <-
nycflights13_fk %>%
cdm_set_colors(
airlines = , planes = , weather = , airports = "blue"
)
nycflights13_base %>%
dm_draw()
##
##
##
## Use data manipulation to understand and establish relationships
## --------------------------------------------------------------------
##
##
##
# Determine key candidates
zoomed_weather <- dm_zoom_to(nycflights13_base, weather)
zoomed_weather
# `enum_pk_candidates()` works for both `tibbles` and `dm_zoomed`
enum_pk_candidates(zoomed_weather)
enum_pk_candidates(zoomed_weather) %>%
count(candidate)
# It's tricky:
zoomed_weather %>%
unite("slot_id", origin, year, month, day, hour, remove = FALSE) %>%
count(slot_id) %>%
filter(n > 1)
zoomed_weather %>%
count(origin, time_hour) %>%
filter(n > 1)
zoomed_weather %>%
count(origin, format(time_hour)) %>%
filter(n > 1)
# This looks like a good candidate:
zoomed_weather %>%
count(origin, format(time_hour, tz = "UTC")) %>%
filter(n > 1)
# FIXME: Support compound keys (#3)
# Currently, we need to create surrogate keys:
nycflights13_weather_link <-
zoomed_weather %>%
mutate(time_hour_fmt = format(time_hour, tz = "UTC")) %>%
unite("origin_slot_id", origin, time_hour_fmt) %>%
# here the original 'weather' table is updated with the manipulated one
dm_update_zoomed() %>%
# here we are adding a PK for the "enhanced" weather table
dm_add_pk(weather, origin_slot_id)
nycflights13_weather_link$weather
nycflights13_weather_link %>%
dm_draw()
# FIXME: zoom to multiple tables
nycflights13_weather_flights_link <-
dm_zoom_to(nycflights13_weather_link, flights) %>%
# same procedure with `flights` table
mutate(time_hour_fmt = format(time_hour, tz = "UTC")) %>%
# for flights we need to keep the column `origin`,
# since it is a FK pointing to `airports`
unite("origin_slot_id", origin, time_hour_fmt, remove = FALSE) %>%
select(origin_slot_id, everything(), -time_hour_fmt) %>%
dm_update_zoomed()
# `dm_enum_fk_candidates()` of a `dm` gives info
# about potential FK columns from one table to another
dm_enum_fk_candidates(nycflights13_weather_flights_link, flights, weather)
# well, it's almost perfect, let's add the FK anyway...
nycflights13_perfect <-
nycflights13_weather_flights_link %>%
dm_add_fk(flights, origin_slot_id, weather)
nycflights13_perfect %>%
dm_draw()
# What are the missings?
nycflights13_perfect %>%
dm_zoom_to(flights) %>%
anti_join(weather) %>%
count(origin_slot_id)
# Create table of aggregates, and insert it into the dm
nycflights13_perfect %>%
dm_zoom_to(flights) %>%
count(origin) %>%
dm_insert_zoomed("flights_agg") %>%
dm_draw()
##
##
##
## USE CASE 3: Publish a dm to a relational database (and load from it)
## --------------------------------------------------------------------
##
##
##
##
##
##
##
##
## Copy to database
## --------------------------------------------------------------------
##
##
##
# All operations are designed to work locally and on the database
dm_flights_sqlite <-
dm_flights %>%
copy_dm_to(
dbplyr::src_memdb(), .,
unique_table_names = TRUE, set_key_constraints = FALSE
)
dm_flights_sqlite
dm_flights_sqlite %>%
dm_draw()
dm_flights_sqlite %>%
dm_get_tables() %>%
map(dbplyr::sql_render)
dm_flights_sqlite %>%
dm_join_to_tbl(airlines, flights) %>%
dbplyr::sql_render()
dm_flights_sqlite %>%
dm_flatten_to_tbl(flights) %>%
dbplyr::sql_render()
# Filtering on the database
dm_flights_sqlite %>%
dm_filter(airlines, name == "Delta Air Lines Inc.") %>%
dm_filter(airports, name != "John F Kennedy Intl") %>%
dm_filter(flights, day == 1) %>%
dm_apply_filters_to_tbl(flights)
# ... and the corresponding SQL statement and query plan
dm_flights_sqlite %>%
dm_filter(airlines, name == "Delta Air Lines Inc.") %>%
dm_filter(airports, name != "John F Kennedy Intl") %>%
dm_filter(flights, day == 1) %>%
dm_apply_filters_to_tbl(flights) %>%
dbplyr::sql_render()
##
##
##
## Import a dm from a database, including key constraints
## --------------------------------------------------------------------
##
##
##
try({
con_pq <- DBI::dbConnect(RPostgres::Postgres())
# FIXME: Schema support
# Off by default, to ensure that no tables are accidentally deleted
if (FALSE) {
walk(
names(dm_flights),
~ DBI::dbExecute(
con_pq,
paste0("DROP TABLE IF EXISTS ", ., " CASCADE")
)
)
}
# Import
dm_flights_pq <-
dm_flights %>%
dm_filter(planes, TRUE) %>%
dm_filter(flights, month == 1, day == 1) %>%
copy_dm_to(con_pq, ., temporary = FALSE)
dm_flights_from_pq <-
dm_learn_from_db(con_pq)
dm_flights_from_pq %>%
dm_draw()
})
##
##
##
##
## THREE USE CASES:
## --------------------------------------------------------------------
##
## 1. Work with a prepared dm object
## 2. Build a data model for your own data
## 3. Publish a dm to a relational database (and load from it)
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
## Appendix
## ====================================================================
##
##
##
##
##
##
## Analogy?
## --------------------------------------------------------------------
##
##
##
# Analogy: parallel vectors
# Multiple parallel vectors can be combined into a data frame.
# Multiple related tables can be combined into a dm.
x <- 1:5
x
y <- x + 1
y
z <- diff(y)
z
try(
tibble(x = 1:5) %>%
mutate(y = x + 1) %>%
mutate(z = diff(y))
)
##
##
##
## Pitfall: wrong keys
## --------------------------------------------------------------------
##
##
##
# Same for airplanes?
planes
flights_base %>%
left_join(planes)
flights_base %>%
left_join(planes) %>%
count(is.na(type))
# Take a closer look at the join
flights_base %>%
left_join(planes, by = "tailnum")
flights_base %>%
left_join(planes, by = "tailnum") %>%
count(is.na(type))
##
##
##
## Pitfall: data mismatches
## --------------------------------------------------------------------
##
##
##
flights_base %>%
left_join(planes, by = "tailnum") %>%
group_by(carrier) %>%
summarize(mismatch_rate = mean(is.na(type))) %>%
filter(mismatch_rate > 0) %>%
ggplot(aes(x = carrier, y = mismatch_rate)) +
geom_col()
##
##
##
## Pitfall: relationship unclear
## --------------------------------------------------------------------
##
##
##
# Same for airports?
airports
try(
flights_base %>%
left_join(airports)
)
# Need to specify join variables!
flights_base %>%
left_join(airports, by = c("origin" = "faa"))
# cleanup
rm(airlines)
##
##
##
## Pitfall: combinatorial explosion
## --------------------------------------------------------------------
##
##
##
# Row identifiers
t1 <- tibble(a = 1, b = letters[1:3])
t1
t2 <- tibble(a = 1, c = 1:2)
t2
# What happens here?
left_join(t1, t2)
# When joining, the column(s) must be unique in at least one
# participating table!
# Ensure uniqueness:
airlines %>%
count(carrier)
airlines %>%
count(carrier) %>%
count(n)
planes %>%
count(tailnum) %>%
count(n)
# dm shortcut:
planes %>%
check_key(tailnum)
try(
planes %>%
check_key(engines)
)
airports %>%
check_key(faa)
# Why is name not a key candidate for airports?
try(
airports %>%
check_key(name)
)
# Friendly description
airports %>%
enum_pk_candidates()
# Cleanup
rm(t1, t2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.