#' Bayesian vs. t Power Methods
#'
# Show
#' @keywords internal
#' @export
#' @rdname dfba_t_power_method
#' @param object An object of class \code{\linkS4class{dfba_t_power_out}}
setMethod("show", "dfba_t_power_out", function(object) {
cat("Power results for the proportion of samples detecting effects"," ","\n")
cat(" ", "where the variates are distributed as a",object$model,"random variable","\n")
cat(" ", "and where the design is",object$design,"\n")
cat(" ", "The number of Monte Carlo samples are:"," ","\n")
cat(" ", object$nsims," ","\n")
cat(" ", "Criterion for detecting an effect is"," ","\n")
cat(" ", object$effect_crit," ","\n")
cat(" ", "The delta offset parameter:"," ","\n")
cat(" ", object$deltav," ","\n")
cat("Output Results:", "\n")
print(object$outputdf,
row.names = FALSE)
})
# Plot
#' @keywords internal
#' @export
#' @rdname dfba_t_power_method
#' @param x An object of class \code{\linkS4class{dfba_t_power_out}}
setMethod("plot",
signature("dfba_t_power_out"),
function(x){
plot(x$outputdf$sample_size,
x$outputdf$Bayes_power,
type="b",
lty = 1,
ylim=c(0,1),
main=expression(cdots~"Frequentist"~ - "Bayesian"),
xlab="Sample Size",
ylab="Power Estimate")
lines(x$outputdf$sample_size,
x$outputdf$t_power,
type="b",
lty=3)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.