# Some useful keyboard shortcuts for package authoring:
#
# Install Package: 'Ctrl + Shift + B'
# Check Package: 'Ctrl + Shift + E'
# Test Package: 'Ctrl + Shift + T'
#' Mann-Whitney Discrete Function 1
#' This version takes as input $U_E$, $n_E$, $n_C$
#' the desired number of samples (default = 10000)
#' and the desired number of intervals (default = 200).
#'
#' @param U_A U statistic for the A variable
#' @param n_A Number of values for the A variable
#' @param n_B Number of values for the B variable
#' @param n_samples Number of desired samples
#' @param n_intervals Number of desired intervals for the discrete approximation
#'
#' @return omegapost
#' @return omegabar
#' @return comega
#' @return prH1 Posterior probability of the hypothesis that A > B
#'
#' @references Chechile, R.A. (2020). Bayesian Statistics for Experimental Scientists. Cambridge: MIT Press
mann_whitney_discrete_approx_1<-function(U_A, n_A, n_B, n_samples = 10000, n_intervals = 200){
XA=seq(1, n_A, 1)
XB=seq(1, n_B, 1)
fomega<-rep(0.0, n_intervals)
for (j in 1:n_intervals){
omega=0.5/n_intervals+(j-1)*(1/n_intervals)
komega=(1-omega)/omega
for (k in 1:n_samples){
Uz<-rep(NA, n_A)
XA<-rexp(n_A, rate=komega)
XB<-rexp(n_B, rate = 1)
for (i in 1:n_A){
Uz[i]<-sum(XA[i]>XB)
}
if(sum(Uz) == U_A) {fomega[j] = fomega[j]+1} else {}
}
}
tot=sum(fomega)
omegapost=fomega/tot
omegav=seq(0.5/n_intervals, 1-(0.5/n_intervals), 1/n_intervals)
omegabar=sum(omegapost*omegav)
comega=cumsum(omegapost)
prH1=1-comega[n_intervals/2]
list(omegapost=omegapost,
omegabar=omegabar,
comega=comega,
prH1=prH1)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.