library(randomForest)
test_that("Returns correct output format for soft binary classification", {
set.seed(54542142)
mydf = mtcars
mydf$am = as.factor(mydf$am)
mydf$vs = as.factor(mydf$vs)
rf = randomForest::randomForest(am ~ ., data = mydf, ntree = 5L)
pred = Predictor$new(rf, data = mydf, type = "class")
mocc = MOCClassif$new(pred, n_generations = 5L, init_strategy = "random", quiet = TRUE)
x_interest = head(subset(mydf, select = -am), n = 1L)
expect_snapshot({cfactuals = mocc$find_counterfactuals(x_interest, desired_class = "0")})
expect_data_table(cfactuals$data, col.names = "named", types = sapply(x_interest, class))
expect_names(names(cfactuals$data), identical.to = names(x_interest))
})
test_that("Returns correct output format for hard binary classification", {
set.seed(54542142)
rf = get_rf_classif_iris()
iris_pred = iml::Predictor$new(rf, type = "class")
mocc = MOCClassif$new(iris_pred, n_generations = 5L, init_strategy = "random", quiet = TRUE)
x_interest = iris[1L, -5L]
expect_snapshot({
cfactuals = mocc$find_counterfactuals(x_interest, desired_class = "versicolor", desired_prob = 1)
})
expect_data_table(cfactuals$data, col.names = "named", types = sapply(x_interest, class))
expect_names(names(cfactuals$data), identical.to = names(x_interest))
})
test_that("Can handle non-numeric target classes", {
set.seed(544564)
test_data = data.frame(a = rnorm(10), b = rnorm(10), cl = as.factor(rep(c("pos", "neg"), each = 5)),
it = as.integer(c(2, 6, 1, 0, 2)))
rf_pima = randomForest::randomForest(cl ~ . , test_data, ntree = 2L)
pred = iml::Predictor$new(rf_pima, data = test_data, y = "cl")
x_interest = head(subset(test_data, select = -cl), 1L)
set.seed(544564)
mocc = MOCClassif$new(pred, n_generations = 5L, init_strategy = "random", quiet = TRUE)
expect_snapshot({
cfactuals = mocc$find_counterfactuals(x_interest, desired_class = "pos")
})
expect_data_table(cfactuals$data, col.names = "named", types = sapply(x_interest, class))
expect_names(names(cfactuals$data), identical.to = names(x_interest))
})
test_that("Can handle ordered factor input columns", {
set.seed(5748554)
data("german", package = "rchallenge")
rf = randomForest(credit_risk ~ ., data = german)
x_interest = german[991L, -ncol(german)]
pred_credit = iml::Predictor$new(rf, data = german, y = "credit_risk", type = "prob")
moc_classif = MOCClassif$new(
pred_credit, n_generations = 3L, fixed_features = c("personal_status_sex", "age"), max_changed = 4L,
init_strategy = "random", quiet = TRUE
)
expect_snapshot({
cfactuals = moc_classif$find_counterfactuals(x_interest, desired_class = "good", desired_prob = c(0.8 , 1))
})
expect_data_table(cfactuals$data, col.names = "named")
expect_factor(cfactuals$data$installment_rate, levels = levels(german$installment_rate), ordered = TRUE)
expect_names(names(cfactuals$data), identical.to = names(x_interest))
})
test_that("conditional mutator and plotting functions work", {
set.seed(54542142)
rf = get_rf_classif_iris()
iris_pred = iml::Predictor$new(rf, type = "prob")
x_interest = iris[1L, ]
moc_classif = MOCClassif$new(
iris_pred, n_generations = 3L, init_strategy = "traindata", use_conditional_mutator = TRUE, quiet = TRUE
)
cfactuals = moc_classif$find_counterfactuals(x_interest, desired_class = "versicolor", desired_prob = c(0.5, 1))
expect_data_table(cfactuals$data)
p1 = moc_classif$plot_search()
p2 = moc_classif$plot_statistics()
expect_data_table(moc_classif$get_dominated_hv(), nrows = 3, ncols = 2)
expect_data_table(moc_classif$optimizer$archive$data, nrows = 20*3)
expect_error(moc_classif$optimizer <- 35L, "read only")
})
test_that("distance_function can be exchanged", {
set.seed(54542142)
rf = get_rf_classif_iris()
iris_pred = iml::Predictor$new(rf, type = "prob")
x_interest = iris[1L, ]
correct_dist_function = function(x, y, data) {
res = matrix(NA, nrow = nrow(x), ncol = nrow(y))
for (i in 1:nrow(x)) for (j in 1:nrow(y)) res[i, j] = sqrt(sum(((x[i, ] - y[j, ])^2)))
res
}
moc_classif = MOCClassif$new(
iris_pred, n_generations = 3L, distance_function = correct_dist_function, quiet = TRUE,
init_strategy = "random"
)
cfactuals = moc_classif$find_counterfactuals(x_interest, desired_class = "versicolor", desired_prob = c(0.5, 1))
expect_data_table(cfactuals$data)
})
test_that("distance_function gower and gower_c return equal results", {
set.seed(1007)
rf = randomForest(Species ~ ., data = iris)
# Create a predictor object
predictor = iml::Predictor$new(rf, type = "prob")
# Find counterfactuals for x_interest
set.seed(1007)
moc_g = MOCClassif$new(predictor, n_generations = 0L, distance_function = "gower",
init_strategy = "random", quiet = TRUE)
cfactuals_g = moc_g$find_counterfactuals(
x_interest = iris[150L, ], desired_class = "versicolor", desired_prob = c(0.5, 1)
)
# Find counterfactuals for x_interest with gower distance C function
set.seed(1007)
moc_gc = MOCClassif$new(predictor, n_generations = 0L, distance_function = "gower_c",
init_strategy = "random", quiet = TRUE)
cfactuals_gc = moc_gc$find_counterfactuals(
x_interest = iris[150L, ], desired_class = "versicolor", desired_prob = c(0.5, 1)
)
# Print the results
expect_equal(cfactuals_g$data, cfactuals_gc$data)
})
test_that("init_strategy 'icecurve' works ordered factors", {
df = mtcars
df$am = as.factor(df$am)
df$cyl = factor(df$cyl, ordered = TRUE)
rf = randomForest(am ~ ., data = df)
predictor = iml::Predictor$new(rf, type = "prob", data = df)
moc_classif = MOCClassif$new(predictor, n_generations = 15L, quiet = TRUE)
cfactuals = moc_classif$find_counterfactuals(
x_interest = df[1L, ], desired_class = "0", desired_prob = c(0.5, 1)
)
expect_data_table(cfactuals$data)
expect_factor(cfactuals$data$cyl, ordered = TRUE)
})
test_that("termination criterion works properly", {
df = mtcars
df$am = as.factor(df$am)
df$cyl = factor(df$cyl, ordered = TRUE)
rf = randomForest(am ~ ., data = df)
predictor = iml::Predictor$new(rf, type = "prob", data = df)
# terminator_crit == "gens"
moc_classif = MOCClassif$new(predictor, n_generations = 15L, quiet = TRUE)
cfactuals = moc_classif$find_counterfactuals(
x_interest = df[1L, ], desired_class = "0", desired_prob = c(0.5, 1)
)
expect_equal(max(moc_classif$optimizer$archive$data$batch_nr), 15L)
# terminator_crit == "gens", n_generations = 0L
moc_classif = MOCClassif$new(predictor, n_generations = 0L, quiet = TRUE)
cfactuals = moc_classif$find_counterfactuals(
x_interest = df[1L, ], desired_class = "0", desired_prob = c(0.5, 1)
)
expect_equal(max(moc_classif$optimizer$archive$data$batch_nr), 1L)
# terminator_crit == "genstag", n_generation = 0L
moc_classif = MOCClassif$new(predictor, termination_crit = "genstag", n_generations = 0L, quiet = TRUE)
cfactuals = moc_classif$find_counterfactuals(
x_interest = df[1L, ], desired_class = "0", desired_prob = c(0.5, 1)
)
expect_equal(max(moc_classif$optimizer$archive$data$batch_nr), 1L)
# terminator_crit == "genstag", n_generation = 2L
moc_classif = MOCClassif$new(predictor, termination_crit = "genstag", n_generations = 2L, quiet = TRUE)
cfactuals = moc_classif$find_counterfactuals(
x_interest = df[1L, ], desired_class = "0", desired_prob = c(0.5, 1)
)
hv_history = moc_classif$optimizer$archive$data_extra$TerminatorGenerationStagnation
lenhis = length(hv_history)
expect_true(length(unique(as.numeric(hv_history[(lenhis-2):lenhis]))) == 1) # last 3 elements of vector same
# terminator_crit == "genstag", n_generation = 5L
moc_classif = MOCClassif$new(predictor, termination_crit = "genstag",
n_generations = 3L, quiet = TRUE)
cfactuals = moc_classif$find_counterfactuals(
x_interest = df[1L, ], desired_class = "0", desired_prob = c(0.5, 1)
)
hv_history = moc_classif$optimizer$archive$data_extra$TerminatorGenerationStagnation
lenhis = length(hv_history)
expect_true(length(unique(as.numeric(hv_history[(lenhis-3):lenhis]))) == 1) # last 4 elements of vector same
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.