Description Usage Arguments Author(s) References See Also Examples
Function to extract estimated contour probabilities of a particular effect estimated with 
P-splines using Markov chain Monte Carlo (MCMC) estimation techniques. Note that, the contour
probability option must be specified within function sx, see the example.
| 1 | 
| object | an object of class  | 
| model | for which model the contour probabilities should be provided, either an integer or a 
character, e.g.  | 
| term | if not  | 
| ... | not used. | 
Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.
Brezger, A., Lang, S. (2008): Simultaneous probability statements for Bayesian P-splines. Statistical Modeling, 8, 141–186.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ## Not run: 
## generate some data
set.seed(111)
n <- 500
## regressor
dat <- data.frame(x = runif(n, -3, 3))
## response 
dat$y <- with(dat, 1.5 + sin(x) + rnorm(n, sd = 0.6))
## estimate model
## need to set the contourprob option, 
## otherwise BayesX will not calculate probabilities
## see also the reference manual of BayesX available
## at www.BayesX.org
b <- bayesx(y ~ sx(x, bs = "ps", contourprob = 4), data = dat)
## extract contour probabilities
cprob(b, term = "sx(x)")
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.