Description Usage Arguments Details Value See Also Examples
Uses optim to obtain a MLE for the hazard function and animal
perpendicular distance distribution.  Functional forms for the hazard and perpendicular distance 
distribution must be specified.
| 1 2 3 | 
| y | forward distance observations | 
| x | perpendicular distance observations | 
| b | two to four element vector of hazard rate parameters, some of which may be logged | 
| hr | hazard rate function | 
| ystart | max forward distance at which could possibly detect animal (see details). | 
| pi.x | perpendicular distance density distribution | 
| logphi | parameters for pi.x (some maybe logged) | 
| w | perpendicular truncation distance. | 
| method | optimisation method to be used by  | 
| lower,  | upper Bounds for parameters for use with methods such as  | 
| control | see  | 
| itnmax | maximum number of iterations for the  | 
| hessian | return hessian.  See also  | 
| ... | arguments to be passed into  | 
| corrFlag=0.7 | Absolute parameter correlation value above which a warning is issued. | 
Must to ensure the hazard function has decayed to (very close to) zero by 
ystart.
optim fit object and 
$hr = hazard rate function used.
$pi.x = perpendicular distance function used.
$ystart = ystart max forward distance detection used.
$w = perpendicular truncation distance used.
$b = estimated hazard parameters
$dat = data frame with data ($x and $y)
$logphi 
AIC AIC value
And if hessian=TRUE:
vcov variance covariance matrix.  Will warn if there is a problem inverting 
the hessian.
CVpar Coefficient of variation for each paramter estimate. 
error Boolean, TRUE if convergence!=0 or problem inverting the hessian, 
or parameter correlation is exceeded.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | ## Not run: 
#Data preparation:
w=0.03;ystart=0.05
library(xlsx)
dat=read.xlsx("~/Dropbox/packages/LT2D/data/Jantho Primate Line.xlsx",1)
x=dat$PP.Distance
y=dat$Forward.Distance
nas=which(is.na(y))
x=x[-nas]
y=y[-nas]
gtw=which(x>w)
x=x[-gtw]
y=y[-gtw]
#Example model fits:
b=c(-7.3287948, 0.9945317)
logphi=c(.01646734, -4.67131261)
fit.n.optx=NULL
fit.n.optx=fityxOptimx(y,x,b=b,
           hr=h1,ystart=ystart,
           control=list(trace=5),hessian=TRUE,
           pi.x=pi.norm,logphi=logphi,w=w)
b=c(-7.3329141,0.9948721)
logphi=c(-0.05,-4.7)
fit.chn.optx=NULL
fit.chn.optx=fityxOptimx(y,x,b=b,hr=h1,ystart=ystart,
             pi.x=pi.chnorm,logphi=logphi,w=w,itnmax=5000,
             hessian=TRUE,control=list(trace=5))
b=c(5.2919208, -0.2205593, 8.4701307)
logphi=c(0.01784102, -4.42209067)
fit.n.ip1.optx=NULL
fit.n.ip1.optx=fityxOptimx(y,x,b=b,hr=ip1,ystart=ystart,
               pi.x=pi.norm,logphi=logphi,w=w,
               hessian=TRUE,control=list(trace=6))
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.